199 research outputs found
Effective Sampling in the Configurational Space by the Multicanonical-Multioverlap Algorithm
We propose a new generalized-ensemble algorithm, which we refer to as the
multicanonical-multioverlap algorithm. By utilizing a non-Boltzmann weight
factor, this method realizes a random walk in the multi-dimensional,
energy-overlap space and explores widely in the configurational space including
specific configurations, where the overlap of a configuration with respect to a
reference state is a measure for structural similarity. We apply the
multicanonical-multioverlap molecular dynamics method to a penta peptide,
Met-enkephalin, in vacuum as a test system. We also apply the multicanonical
and multioverlap molecular dynamics methods to this system for the purpose of
comparisons. We see that the multicanonical-multioverlap molecular dynamics
method realizes effective sampling in the configurational space including
specific configurations more than the other two methods. From the results of
the multicanonical-multioverlap molecular dynamics simulation, furthermore, we
obtain a new local-minimum state of the Met-enkephalin system.Comment: 15 pages, (Revtex4), 9 figure
Statistical modeling of ground motion relations for seismic hazard analysis
We introduce a new approach for ground motion relations (GMR) in the
probabilistic seismic hazard analysis (PSHA), being influenced by the extreme
value theory of mathematical statistics. Therein, we understand a GMR as a
random function. We derive mathematically the principle of area-equivalence;
wherein two alternative GMRs have an equivalent influence on the hazard if
these GMRs have equivalent area functions. This includes local biases. An
interpretation of the difference between these GMRs (an actual and a modeled
one) as a random component leads to a general overestimation of residual
variance and hazard. Beside this, we discuss important aspects of classical
approaches and discover discrepancies with the state of the art of stochastics
and statistics (model selection and significance, test of distribution
assumptions, extreme value statistics). We criticize especially the assumption
of logarithmic normally distributed residuals of maxima like the peak ground
acceleration (PGA). The natural distribution of its individual random component
(equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized
extreme value. We show by numerical researches that the actual distribution can
be hidden and a wrong distribution assumption can influence the PSHA negatively
as the negligence of area equivalence does. Finally, we suggest an estimation
concept for GMRs of PSHA with a regression-free variance estimation of the
individual random component. We demonstrate the advantages of event-specific
GMRs by analyzing data sets from the PEER strong motion database and estimate
event-specific GMRs. Therein, the majority of the best models base on an
anisotropic point source approach. The residual variance of logarithmized PGA
is significantly smaller than in previous models. We validate the estimations
for the event with the largest sample by empirical area functions. etc
Loss of sea ice during winter north of Svalbard
Sea ice loss in the Arctic Ocean has up to now been strongest during summer. In contrast, the sea ice concentration north of Svalbard has experienced a larger decline during winter since 1979. The trend in winter ice area loss is close to 10% per decade, and concurrent with a 0.3°C per decade warming of the Atlantic Water entering the Arctic Ocean in this region. Simultaneously, there has been a 2°C per decade warming of winter mean surface air temperature north of Svalbard, which is 20–45% higher than observations on the west coast. Generally, the ice edge north of Svalbard has retreated towards the northeast, along the Atlantic Water pathway. By making reasonable assumptions about the Atlantic Water volume and associated heat transport, we show that the extra oceanic heat brought into the region is likely to have caused the sea ice loss. The reduced sea ice cover leads to more oceanic heat transferred to the atmosphere, suggesting that part of the atmospheric warming is driven by larger open water area. In contrast to significant trends in sea ice concentration, Atlantic Water temperature and air temperature, there is no significant temporal trend in the local winds. Thus, winds have not caused the long-term warming or sea ice loss. However, the dominant winds transport sea ice from the Arctic Ocean into the region north of Svalbard, and the local wind has influence on the year-to-year variability of the ice concentration, which correlates with surface air temperatures, ocean temperatures, as well as the local wind
Stability of gene contributions and identification of outliers in multivariate analysis of microarray data
BACKGROUND: Multivariate ordination methods are powerful tools for the exploration of complex data structures present in microarray data. These methods have several advantages compared to common gene-by-gene approaches. However, due to their exploratory nature, multivariate ordination methods do not allow direct statistical testing of the stability of genes. RESULTS: In this study, we developed a computationally efficient algorithm for: i) the assessment of the significance of gene contributions and ii) the identification of sample outliers in multivariate analysis of microarray data. The approach is based on the use of resampling methods including bootstrapping and jackknifing. A statistical package of R functions was developed. This package includes tools for both inferring the statistical significance of gene contributions and identifying outliers among samples. CONCLUSION: The methodology was successfully applied to three published data sets with varying levels of signal intensities. Its relevance was compared with alternative methods. Overall, it proved to be particularly effective for the evaluation of the stability of microarray data
Phylogeography of the tropical planktonic foraminifera lineage Globigerinella reveals isolation inconsistent with passive dispersal by ocean currents
Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates
Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance
Published in Handbook of financial time series, 2008, https://doi.org/10.1007/978-3-540-71297-8_22</p
- …