1,227 research outputs found

    Evidence for flow in pPb collisions at 5 TeV from v2 mass splitting

    Full text link
    We show that a fluid dynamical scenario describes quantitatively the observed mass splitting of the elliptical flow coefficients v2 for pions, kaons, and protons. This provides a strong argument in favor of the existence of a fluid dynamical expansion in pPb collisions at 5TeV

    Neutrino charge radius and electromagnetic dipole moments via scalar and vector leptoquarks

    Full text link
    The one-loop contribution of scalar and vector leptoquarks (LQs) to the electromagnetic properties (NEPs) of massive Dirac neutrinos is presented via an effective Lagrangian approach, with emphasis on the effective neutrino charge radius (NCR), which has never been calculated and is obtained by the background field formalism in a Yang-Mills-like scenario for gauge LQs. Analytical results for nonzero neutrino mass are presented in terms of both Feynman-parameter integrals and Passarino-Veltman scalar functions, which can be useful to obtain the NEPs of heavy neutrinos, out of which approximate expressions are obtained for light neutrinos. For the numerical analysis we concentrate on the only renormalizable scalar and vector LQ representations that do not need extra symmetries to forbid tree-level proton decay. Constraints on the parameter space consistent with current experimental data are then discussed and it is found that the LQ representations R~2\widetilde{R}_2 and U1U_1 could yield the largest contributions to the NEPs provided that they have couplings to both left- and right-handed neutrinos of the order of O(1)O(1). For a LQ mass of 1.51.5 TeV, the magnetic dipole moment (MDM) of the tau neutrino can be of the order of 10−910^{-9} μB\mu_B, whereas its neutrino electric dipole moment (EDM) can reach values as high as 10−2010^{-20}-10−1910^{-19} ecm. On the other hand, the NCR can reach values up to 10−3510^{-35} cm2^2 regardless of the neutrino flavor and even in the absence of right-handed neutrinos. In the latter scenario, the EDM vanishes and the contribution to neutrino MDM would be negligible, of the order of 10−1410^{-14} μB\mu_B for the tau neutrino, whereas those for the muon and electron neutrinos would be about two and seven orders of magnitude smaller, respectively. Our estimates could be severely suppressed due to a possible suppression of the LQ coupling constants.Comment: 31 pages, 11 figure

    Idiopathic mediastinal fibrosis

    Full text link
    peer reviewedFibrosing mediastinitis is a rare condition characterized by an excessive growth of dense fibrous tissue within the mediastinum. The etiology of the disease is most often a fungal infection and may in some cases be idiopathic. We present the case of a patient with chronic obstructive pulmonary disease (COPD) suffering from fibrosing mediastinitis of undetermined origin and in whom the diagnosis was established by histopathological analysis after mediastinoscopy

    Liquid-gas phase transition in hot nuclei studied with INDRA

    Full text link
    Thanks to the high detection quality of the INDRA array, signatures related to the dynamics (spinodal decomposition) and thermodynamics (negative microcanonical heat capacity) of a liquid-gas phase transition have been simultaneously studied in multifragmentation events in the Fermi energy domain. The correlation between both types of signals strongly supports the existence of a first order phase transition for hot nuclei.Comment: 9 pages, 2 figures, Invited talk to Nucleus-nucleus 2003 Moscow June 200
    • …
    corecore