111 research outputs found

    Antigen Retrieval and Its Effect on the MALDI-MSI of Lipids in Formalin-Fixed Paraffin-Embedded Tissue

    Get PDF
    Formalin-fixed paraffin-embedded (FFPE) tissue represents the primary source of clinical tissue and is routinely used in MALDI-MSI studies. However, it is not particularly suitable for lipidomics imaging given that many species are depleted during tissue processing. Irrespective, a number of solvent-resistant lipids remain, but their extraction may be hindered by the cross-link between proteins. Therefore, an antigen retrieval step could enable the extraction of a greater number of lipids and may provide information that is complementary to that which can be obtained from other biomolecules, such as proteins. In this short communication, we aim to address the effect of performing antigen retrieval prior to MALDI-MSI of lipids in FFPE tissue. As a result, an increased number of lipid signals could be detected and may have derived from lipid species that are known to be implicated in the lipid-protein cross-linking that is formed as a result of formalin fixation. Human renal cancer tissue was used as a proof of concept to determine whether using these detected lipid signals were also able to highlight the histopathological regions that were present. These preliminary findings may highlight the potential to enhance the clinical relevance of the lipidomic information obtained from FFPE tissue

    A Novel Perilla frutescens (L.) Britton Cell-Derived Phytocomplex Regulates Keratinocytes Inflammatory Cascade and Barrier Function and Preserves Vaginal Mucosal Integrity In Vivo

    Get PDF
    : In the last years, the medicinal plant Perilla frutescens (L.) Britton has gained scientific interest because leaf extracts, due to the presence of rosmarinic acid and other polyphenols, have shown anti-allergic and skin protective potential in pre-clinical studies. Nevertheless, the lack of standardized extracts has limited clinical applications to date. In this work, for the first time, a standardized phytocomplex of P. frutescens, enriched in rosmarinic acid and total polyphenols, was produced through innovative in vitro cell culture biotechnology and tested. The activity of perilla was evaluated in an in vitro inflammatory model of human keratinocytes (HaCaT) by monitoring tight junctions, filaggrin, and loricrin protein levels, the release of pro-inflammatory cytokines and JNK MAPK signaling. In a practical health care application, the perilla biotechnological phytocomplex was tested in a multilayer model of vaginal mucosa, and then, in a preliminary clinical observation to explore its capacity to preserve vaginal mucosal integrity in women in peri-menopause. In keratinocytes cells, perilla phytocomplex demonstrated to exert a marked activity in epidermis barrier maintenance and anti-inflammatory effects, preserving tight junction expression and downregulating cytokines release through targeting JNK activation. Furthermore, perilla showed positive effects in retaining vaginal mucosal integrity in the reconstructed vaginal mucosa model and in vivo tests. Overall, our data suggest that the biotechnological P. frutescens phytocomplex could represent an innovative ingredient for dermatological applications

    Detecting Proteomic Indicators to Distinguish Diabetic Nephropathy from Hypertensive Nephrosclerosis by Integrating Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging with High-Mass Accuracy Mass Spectrometry

    Get PDF
    Introduction: Diabetic nephropathy (DN) and hypertensive nephrosclerosis (HN) represent the most common causes of chronic kidney disease (CKD) and many patients progress to -end-stage renal disease. Patients are treated primarily through the management of cardiovas-cular risk factors and hypertension; however patients with HN have a more favorable outcome. A noninvasive clinical approach to separate these two entities, especially in hypertensive patients who also have diabetes, would allow for targeted treatment and more appropriate resource allocation to those patients at the highest risk of CKD progression. Meth-ods: In this preliminary study, high-spatial-resolution matrix-assisted laser desorption/ion-ization (MALDI) mass spectrometry imaging (MSI) was integrated with high-mass accuracy MALDI-FTICR-MS and nLC-ESI-MS/MS analysis in order to detect tissue proteins within kidney biopsies to discriminate cases of DN (n = 9) from cases of HN (n = 9). Results: Differences in the tryptic peptide profiles of the 2 groups could clearly be detected, with these becoming even more evident in the more severe histological classes, even if this was not evident with routine histology. In particular, 4 putative proteins were detected and had a higher signal intensity within regions of DN tissue with extensive sclerosis or fibrosis. Among these, 2 proteins (PGRMC1 and CO3) had a signal intensity that increased at the latter stages of the disease and may be associated with progression. Discussion/conclusion: This preliminary study represents a valuable starting point for a future study employing a larger cohort of patients to develop sensitive and specific protein biomarkers that could reliably differentiate between diabetic and hypertensive causes of CKD to allow for improved diagnosis, fewer biopsy procedures, and refined treatment approaches for clinicians

    MiR-1227 targets SEC23A to regulate the shedding of large extracellular vesicles

    Get PDF
    Cancer cells shed a heterogenous mixture of extracellular vesicles (EVs), differing in both size and composition, which likely influence physiological processes in different manners. However, how cells differentially control the shedding of these EV populations is poorly understood. Here, we show that miR-1227, which is enriched in prostate cancer EVs, compared to the cell of origin, but not in EVs derived from prostate benign epithelial cells, induces the shedding of large EVs (such as large oncosomes), while inhibiting the shedding of small EVs (such as exosomes). RNA sequencing from cells stably expressing miR-1227, a modified RISCTRAP assay that stabilizes and purifies mRNA-miR-1227 complexes for RNA sequencing, and in silico target prediction tools were used to identify miR-1227 targets that may mediate this alteration in EV shedding. The COPII vesicle protein SEC23A emerged and was validated by qPCR, WBlot, and luciferase assays as a direct target of miR-1227. The inhibition of SEC23A was sufficient to induce the shedding of large EVs. These results identify a novel mechanism of EV shedding, by which the inhibition of SEC23A by miR-1227 induces a shift in EV shedding, favoring the shedding of large EV over small EV

    A genetic platform to model sarcomagenesis from primary adult mesenchymal stem cells

    Get PDF
    The regulatory factors governing adult mesenchymal stem cells (MSCs) physiology and their tumorigenic potential are still largely unknown, which substantially delays the identification of effective therapeutic approaches for the treatment of aggressive and lethal form of MSC-derived mesenchymal tumors, such as undifferentiated sarcomas. Here we have developed a novel platform to screen and quickly identify genes and pathways responsible for adult MSCs transformation, modeled undifferentiated sarcoma in vivo, and, ultimately, tested the efficacy of targeting the identified oncopathways. Importantly, by taking advantage of this new platform, we demonstrate the key role of an aberrant LRF-DLK1-SOX9 pathway in the pathogenesis of undifferentiated sarcoma with important therapeutic implications

    Paclitaxel 175 or 225 mg per Meters Squared With Carboplatin in Advanced Ovarian Cancer: A Randomized Trial

    Get PDF
    Purpose To analyze the effect of different doses of paclitaxel with fixed doses of carboplatin in the treatment of ovarian cancer. Patients and Methods Patients with histologically confirmed epithelial ovarian cancer, International Federation of Gynecology and Obstetrics stages IIB to IV, were eligible for this randomized, multicenter study. Women were randomly assigned to treatment with (1) carboplatin at the dose (in milligrams) corresponding to the following formula: target area under the free carboplatin plasma concentration versus time curve (AUC) 6 (glomerular filtration rate 25) mg/m2 (AUC6) plus paclitaxel 175 mg/m2 for six cycles every 21 days or (2) carboplatin AUC6 plus paclitaxel 225 mg/m2 for six cycles every 21 days. A total of 502 women entered the study. Results Pathologic complete response was documented in 132 patients (63.8%) in the 175 mg/m2 group and in 127 cases (55.7%) in the 225 mg/m2 group ( 2 P .090). The 4-year progression-free survival rate was 41.5% (SE 3.5) in the 175-mg group and 39.2% (SE 3.5) in the 225-mg group. The corresponding 4-year survival rates were 46.2% (based on 115 deaths) and 47.3% (based on 113 deaths), respectively. Conclusion This randomized trial suggests that paclitaxel 175 mg/m2 plus carboplatin AUC6 is the schedule with a more favorable profile than paclitaxel 225 mg/m2 plus carboplatin AUC6

    Detecting proteomic indicators to distinguish diabetic nephropathy from hypertensive nephrosclerosis by integrating matrix-assisted laser desorption/ionization mass spectrometry imaging with high-mass accuracy mass spectrometry

    Get PDF
    Introduction: Diabetic nephropathy (DN) and hypertensive nephrosclerosis (HN) represent the most common causes of chronic kidney disease (CKD) and many patients progress to -end-stage renal disease. Patients are treated primarily through the management of cardiovas-cular risk factors and hypertension; however patients with HN have a more favorable outcome. A noninvasive clinical approach to separate these two entities, especially in hypertensive patients who also have diabetes, would allow for targeted treatment and more appropriate resource allocation to those patients at the highest risk of CKD progression. Meth-ods: In this preliminary study, high-spatial-resolution matrix-assisted laser desorption/ion-ization (MALDI) mass spectrometry imaging (MSI) was integrated with high-mass accuracy MALDI-FTICR-MS and nLC-ESI-MS/MS analysis in order to detect tissue proteins within kidney biopsies to discriminate cases of DN (n = 9) from cases of HN (n = 9). Results: Differences in the tryptic peptide profiles of the 2 groups could clearly be detected, with these becoming even more evident in the more severe histological classes, even if this was not evident with routine histology. In particular, 4 putative proteins were detected and had a higher signal intensity within regions of DN tissue with extensive sclerosis or fibrosis. Among these, 2 proteins (PGRMC1 and CO3) had a signal intensity that increased at the latter stages of the disease and may be associated with progression. Discussion/Conclusion: This preliminary study represents a valuable starting point for a future study employing a larger cohort of patients to develop sensitive and specific protein biomarkers that could reliably differentiate between diabetic and hypertensive causes of CKD to allow for improved diagnosis, fewer biopsy procedures, and refined treatment approaches for clinicians.Proteomic

    Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer

    Get PDF
    A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency. Using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but its drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the fusion oncogene PML-RARα and treats APL in cell and animal models and human patients. ATRA-induced Pin1 ablation also inhibits triple negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors
    • …
    corecore