120 research outputs found

    High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions

    Get PDF
    High-resolution ultrasound spectroscopy (HR-US) is a spectroscopic technique using ultrasound waves at high frequencies to investigate the structural properties of dispersed materials. This technique is able to monitor the variation of ultrasound parameters (sound speed and attenuation) due to the interaction of ultrasound waves with samples as a function of temperature and concentration. Despite being employed for the characterization of several colloidal systems, there is a lack in the literature regarding the comparison between the potential of HR-US for the determination of phospholipid thermal transitions and that of other common techniques both for loaded or unloaded liposomes. Thermal transitions of liposomes composed of pure phospholipids (dimyristoylphosphatidylcholine, DMPC; dipalmitoylphosphatidylcholine, DPPC and distearoylphosphatidylcholine, DSPC), cholesterol and their mixtures were investigated by HR-US in comparison to the most commonly employed microcalorimetry (mDSC) and dynamic light scattering (DLS). Moreover, tramadol hydrochloride, caffeine or miconazole nitrate as model drugs were loaded in DPPC liposomes to study the effect of their incorporation on thermal properties of a phospholipid bilayer. HR-US provided the determination of phospholipid sol-gel transition temperatures from both attenuation and sound speed that are comparable to those calculated by mDSC and DLS techniques for all analysed liposomal dispersions, both loaded and unloaded. Therefore, HR-US is proposed here as an alternative technique to determine the transition temperature of phospholipid membrane in liposomes

    Electrospinning and characterisation of silk fibroin/wool keratin blends

    Get PDF
    Fibroin (degummed silk) and keratin are structural biopolymers respectively from silkworm filaments and from hair, wool, feathers, nails and horns. They are candidate materials for biomediacal applications because they have several useful properties including good biocompatibility and biodegradability. Many works deal about the electrospinning of silk fibroin solutions, but few works deal about the electrospinning of keratin in blend with other polymers; moreover, keratin hasn’t been previously electrospun as pure polymer

    Effects of the blending ratio on the design of keratin/poly (Butylene succinate) nanofibers for drug delivery applications

    Get PDF
    In recent years there has been a growing interest in the use of proteins as biocompatible and environmentally friendly biomolecules for the design of wound healing and drug delivery sys-tems. Keratin is a fascinating protein, obtainable from several keratinous biomasses such as wool, hair or nails, with intrinsic bioactive properties including stimulatory effects on wound repair and excellent carrier capability. In this work keratin/poly (butylene succinate) blend solutions with functional properties tunable by manipulating the polymer blending ratios were prepared by using 1,1,1,3,3,3‐hexafluoroisopropanol as common solvent. Afterwards, these solutions doped with rho-damine B (RhB), were electrospun into blend mats and the drug release mechanism and kinetics as a function of blend composition was studied, in order to understand the potential of such mem-branes as drug delivery systems. The electrophoresis analysis carried out on keratin revealed that the solvent used does not degrade the protein. Moreover, all the blend solutions showed a non‐ Newtonian behavior, among which the Keratin/PBS 70/30 and 30/70 ones showed an amplified orientation ability of the polymer chains when subjected to a shear stress. Therefore, the resulting nan-ofibers showed thinner mean diameters and narrower diameter distributions compared to the Ker-atin/PBS 50/50 blend solution. The thermal stability and the mechanical properties of the blend elec-trospun mats improved by increasing the PBS content. Finally, the RhB release rate increased by increasing the keratin content of the mats and the drug diffused as drug‐protein complex

    Defensome against Toxic Diatom Aldehydes in the Sea Urchin Paracentrotus lividus

    Get PDF
    Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3Δ, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants

    A predictive in vitro model of the impact of drugs with anticholinergic properties on human neuronal and astrocytic systems

    Get PDF
    The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly

    Effects of the neurotoxic thionophosphate pesticide chlorpyrifos on differentiating alternative models

    No full text
    Studies by researchers worldwide have revealed that, even in industrialised nations, people, infants and the aged in particular, are even more exposed to neurotoxic drugs as a consequence of the increased quantity of pesticide residues in food. This phenomenon, as underlined by The Worldwatch Institute (2006), is linked to the exponential increase in the use of these toxic compounds over the last 40. years, up from 0.49. kg per hectare in 1961 to 2. kg in 2004, with the result that these substances are found in the daily diet.Many studies have demonstrated how the assumption of pesticides in the neonatal period and early infancy can alter the development and function of the nervous, immune, endocrine and reproductive apparatuses. Moreover, the unequivocal relationship between brain tumours, infant leukemia and pesticides are well recognised.On the basis of the above information, the effects of the neurotoxic thionophosphate pesticide chlorpyrifos (CPF) have been tested, considering biomarkers of toxicity and toxicity endpoint, on the biological models Dictyostelium discoideum, Paracentrotus lividus, and NTera2 Cells, as they are compatible with the 3Rs strategy (Reduction, Replacement, and Refinement in animal experiments). Our results have revealed that developing organisms are particularly sensitive to the toxic effects of CPF. \ua9 2012 Elsevier Ltd
    • 

    corecore