10,018 research outputs found

    Atmospheric nitrogen oxides (NO and NO2) at Dome C, East Antarctica, during the OPALE campaign

    Get PDF
    Mixing ratios of the atmospheric nitrogen oxides NO and NO2 were measured as part of the OPALE (Oxidant Production in Antarctic Lands & Export) campaign at Dome C, East Antarctica (75.1 degrees S, 123.3 degrees E, 3233 m), during December 2011 to January 2012. Profiles of NOx mixing ratios of the lower 100m of the atmosphere confirm that, in contrast to the South Pole, air chemistry at Dome C is strongly influenced by large diurnal cycles in solar irradiance and a sudden collapse of the atmospheric boundary layer in the early evening. Depth profiles of mixing ratios in firn air suggest that the upper snowpack at Dome C holds a significant reservoir of photolytically produced NO2 and is a sink of gas-phase ozone (O-3). First-time observations of bromine oxide (BrO) at Dome C show that mixing ratios of BrO near the ground are low, certainly less than 5 pptv, with higher levels in the free troposphere. Assuming steady state, observed mixing ratios of BrO and RO2 radicals are too low to explain the large NO2 : NO ratios found in ambient air, possibly indicating the existence of an unknown process contributing to the atmospheric chemistry of reactive nitrogen above the Antarctic Plateau. During 2011-2012, NOx mixing ratios and flux were larger than in 2009-2010, consistent with also larger surface O-3 mixing ratios resulting from increased net O-3 production. Large NOx mixing ratios at Dome C arise from a combination of continuous sunlight, shallow mixing height and significant NOx emissions by surface snow (F-NOx). During 23 December 2011-12 January 2012, median F-NOx was twice that during the same period in 20092010 due to significantly larger atmospheric turbulence and a slightly stronger snowpack source. A tripling of F-NOx in December 2011 was largely due to changes in snowpack source strength caused primarily by changes in NO3- concentrations in the snow skin layer, and only to a secondary order by decrease of total column O-3 and associated increase in NO3- photolysis rates. A source of uncertainty in model estimates of F-NOx is the quantum yield of NO3- photolysis in natural snow, which may change over time as the snow ages

    A Study Skills Course for Sixth Grade Students

    Get PDF
    This project was designed for the sixth grade classes at North Tapps Middle School in the Dieringer School district, Sumner Washington. It was designed as an exploratory class and will last one quarter or 45 school days. All sixth grade students will participate in this class during one quarter of the year. This course is broken into 7 units, with each unit being approximately five school days. The units are: 1) Time Management, 2) Study Habits Awareness, 3) SQ4R, 4) Skimming and Scanning, 5) Outlining and Note Taking, 6) Following Directions, Using Context Clues, and Dictionary Skills, and 7) Test Taking Skills. It was developed with the collaboration of other sixth grade teachers, staff, and our building principal

    X-ray to NIR emission from AA Tauri during the dim state - Occultation of the inner disk and gas-to-dust ratio of the absorber

    Full text link
    AA Tau is a well-studied, nearby classical T Tauri star, which is viewed almost edge-on. A warp in its inner disk periodically eclipses the central star, causing a clear modulation of its optical light curve. The system underwent a major dimming event beginning in 2011 caused by an extra absorber, which is most likely associated with additional disk material in the line of sight toward the central source. We present new XMM-Newton X-ray, Hubble Space Telescope FUV, and ground based optical and near-infrared data of the system obtained in 2013 during the long-lasting dim phase. The line width decrease of the fluorescent H2_2 disk emission shows that the extra absorber is located at r>1 r>1\,au. Comparison of X-ray absorption (NHN_H) with dust extinction (AVA_V), as derived from measurements obtained one inner disk orbit (eight days) after the X-ray measurement, indicates that the gas-to-dust ratio as probed by the NHN_H to AVA_V ratio of the extra absorber is compatible with the ISM ratio. Combining both results suggests that the extra absorber, i.e., material at r>1 r>1\,au, has no significant gas excess in contrast to the elevated gas-to-dust ratio previously derived for material in the inner region (â‰Č0.1 \lesssim0.1\,au).Comment: 16 pages, 12 figures, accepted by A&

    Tracer Measurements in Growing Sea Ice Support Convective Gravity Drainage Parameterizations

    Get PDF
    Gravity drainage is the dominant process redistributing solutes in growing sea ice. Modeling gravity drainage is therefore necessary to predict physical and biogeochemical variables in sea ice. We evaluate seven gravity drainage parameterizations, spanning the range of approaches in the literature, using tracer measurements in a sea ice growth experiment. Artificial sea ice is grown to around 17 cm thickness in a new experimental facility, the Roland von Glasow air‐sea‐ice chamber. We use NaCl (present in the water initially) and rhodamine (injected into the water after 10 cm of sea ice growth) as independent tracers of brine dynamics. We measure vertical profiles of bulk salinity in situ, as well as bulk salinity and rhodamine in discrete samples taken at the end of the experiment. Convective parameterizations that diagnose gravity drainage using Rayleigh numbers outperform a simpler convective parameterization and diffusive parameterizations when compared to observations. This study is the first to numerically model solutes decoupled from salinity using convective gravity drainage parameterizations. Our results show that (1) convective, Rayleigh number‐based parameterizations are our most accurate and precise tool for predicting sea ice bulk salinity; and (2) these parameterizations can be generalized to brine dynamics parameterizations, and hence can predict the dynamics of any solute in growing sea ic

    The pro-p-Iwahori–Hecke algebra of a reductive p-adic group, II

    Full text link
    For any commutative ring R and any reductive p-adic group G, we describe the center of the pro-p-Iwahori–Hecke R-algebra of G. We show that the pro-p-Iwahori–Hecke algebra is a finitely generated module over its center and is a finitely generated R-algebra. When the ring R is noetherian, the center is a finitely generated R-algebra and the pro-p-Iwahori–Hecke R-algebra is noetherian. This generalizes results known only for split groups

    Plume mapping and isotopic characterisation of anthropogenic methane sources

    Get PDF
    Methane stable isotope analysis, coupled with mole fraction measurement, has been used to link isotopic signature to methane emissions from landfill sites, coal mines and gas leaks in the United Kingdom. A mobile Picarro G2301 CRDS (Cavity Ring-Down Spectroscopy) analyser was installed on a vehicle, together with an anemometer and GPS receiver, to measure atmospheric methane mole fractions and their relative location while driving at speeds up to 80 kph. In targeted areas, when the methane plume was intercepted, air samples were collected in Tedlar bags, for delta C-13-CH4 isotopic analysis by CF-GC-IRMS (Continuous Flow Gas Chromatography-Isotope Ratio Mass Spectrometry). This method provides high precision isotopic values, determining delta C-13-CH4 to +/- 0.05 per mil. The bulk signature of the methane plume into the atmosphere from the whole source area was obtained by Keeling plot analysis, and a delta C-13 -CH4 signature, with the relative uncertainty, allocated to each methane source investigated. Both landfill and natural gas emissions in SE England have tightly constrained isotopic signatures. The averaged delta C-13-CH4 for landfill sites is -58 +/- 3%o. The delta C-13-CH4 signature for gas leaks is also fairly constant around -36 +/- 2 parts per thousand, a value characteristic of homogenised North Sea supply. In contrast, signatures for coal mines in N. England and Wales fall in a range of -51.2 +/- 0.3 parts per thousand to 30.9 +/- 1.4 parts per thousand, but can be tightly constrained by region. The study demonstrates that CRDS-based mobile methane measurement coupled with off-line high precision isotopic analysis of plume samples is an efficient way of characterising methane sources. It shows that iiotopic measurements allow type identification, and possible location of previously unknown methane sources. In modelling studies this measurement provides an independent constraint to determine the contributions of different sources to the regional methane budget and in the verification of inventory source distribution. (C) 2015 Elsevier Ltd. All rights reserved
    • 

    corecore