36 research outputs found

    Mitonuclear interactions modulate nutritional preference

    Get PDF
    In nature, organisms are faced with constant nutritional options which fuel key life-history traits. Studies have shown that species can actively make nutritional decisions based on internal and external cues. Metabolism itself is underpinned by complex genomic interactions involving components from both nuclear and mitochondrial genomes. Products from these two genomes must coordinate how nutrients are extracted, used and recycled. Given the complicated nature of metabolism, it is not well understood how nutritional choices are affected by mitonuclear interactions. This is under the rationale that changes in genomic interactions will affect metabolic flux and change physiological requirements. To this end we used a large Drosophila mitonuclear genetic panel, comprising nine isogenic nuclear genomes coupled to nine mitochondrial haplotypes, giving a total of 81 different mitonuclear genotypes. We use a capillary-based feeding assay to screen this panel for dietary preference between carbohydrate and protein. We find significant mitonuclear interactions modulating nutritional choices, with these epistatic interactions also being dependent on sex. Our findings support the notion that complex genomic interactions can place a constraint on metabolic flux. This work gives us deeper insights into how key metabolic interactions can have broad implications on behaviour

    Redox stress shortens lifespan through suppression of respiratory complex I in flies with mitonuclear incompatibilities

    Get PDF
    Incompatibilities between mitochondrial and nuclear genes can perturb respiration, biosynthesis, signaling and gene expression. Here we investigate whether mild mitonuclear incompatibilities alter the physiological response to redox stress induced by N-acetyl cysteine (NAC). We studied three Drosophila melanogaster lines with mitochondrial genomes that were either coevolved (WT) or mildly mismatched (BAR, COX) to an isogenic nuclear background. Responses to NAC varied substantially with mitonuclear genotype, sex, tissue and dose. NAC caused infertility and high mortality in some groups, but not others. Using tissue-specific high-resolution fluorespirometry, we show that NAC did not alter H2O2 flux but suppressed complex I-linked respiration in female flies, while maintaining a reduced glutathione pool. The high mortality in BAR females was associated with severe (>50 %) suppression of complex I-linked respiration, rising H2O2 flux in the ovaries, and significant oxidation of the glutathione pool. Our results suggest that redox stress is attenuated by the suppression of complex-I linked respiration, to the point of death in some mitonuclear lines. We propose that suppression of complex I-linked respiration is a general mechanism to maintain redox homeostasis in tissues, which could offset oxidative stress in ageing, producing a metabolic phenotype linked with epigenetic changes and age-related decline

    Inheritance through the cytoplasm

    Get PDF
    Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes, and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota. We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding hereditary symbiosis

    Positive selection on mitochondria may eliminate heritable microbes from arthropod populations

    Get PDF
    Diverse eukaryotic taxa carry facultative heritable symbionts, microbes that are passed from mother to offspring. These symbionts are coinherited with mitochondria, and selection favouring either new symbionts, or new symbiont variants, is known to drive loss of mitochondrial diversity as a correlated response. More recently, evidence has accumulated of episodic directional selection on mitochondria, but with currently unknown consequences for symbiont evolution. We therefore employed a population genetic mean field framework to model the impact of selection on mitochondrial DNA (mtDNA) upon symbiont frequency for three generic scenarios of host–symbiont interaction. Our models predict that direct selection on mtDNA can drive symbionts out of the population where a positively selected mtDNA mutation occurs initially in an individual that is uninfected with the symbiont, and the symbiont is initially at low frequency. When, by contrast, the positively selected mtDNA mutation occurs in a symbiont-infected individual, the mutation becomes fixed and in doing so removes symbiont variation from the population. We conclude that the molecular evolution of symbionts and mitochondria, which has previously been viewed from a perspective of selection on symbionts driving the evolution of a neutral mtDNA marker, should be reappraised in the light of positive selection on mtDNA

    Experimental evidence that thermal selection shapes mitochondrial genome evolution

    Get PDF
    Mitochondria are essential organelles, found within eukaryotic cells, which contain their own DNA. Mitochondrial DNA (mtDNA) has traditionally been used in population genetic and biogeographic studies as a maternally-inherited and evolutionary-neutral genetic marker. However, it is now clear that polymorphisms within the mtDNA sequence are routinely non-neutral, and furthermore several studies have suggested that such mtDNA polymorphisms are also sensitive to thermal selection. These observations led to the formulation of the "mitochondrial climatic adaptation" hypothesis, for which all published evidence to date is correlational. Here, we use laboratory-based experimental evolution in the fruit fly, Drosophila melanogaster, to test whether thermal selection can shift population frequencies of two mtDNA haplogroups whose natural frequencies exhibit clinal associations with latitude along the Australian east-coast. We present experimental evidence that the thermal regime in which the laboratory populations were maintained drove changes in haplogroup frequencies across generations. Our results strengthen the emerging view that intra-specific mtDNA variants are sensitive to selection, and suggest spatial distributions of mtDNA variants in natural populations of metazoans might reflect adaptation to climatic environments rather than within-population coalescence and diffusion of selectively-neutral haplotypes across populations

    Female preference data

    No full text
    Here we have the total amount of protein and carbohydrate consumed for each genotype in a virgin or mated state. We also include the residuals from the preliminary model

    Data from: Mitochondrial genetic effects on reproductive success: signatures of positive intrasexual, but negative intersexual pleiotropy

    No full text
    Theory predicts that maternal inheritance of mitochondria will facilitate the accumulation of mtDNA mutations that are male biased, or even sexually antagonistic, in effect. While there are many reported cases of mtDNA mutations conferring cytoplasmic male sterility in plants, historically it was assumed such mutations would not persist in the streamlined mitochondrial genomes of bilaterian metazoans. Intriguingly, recent cases of mitochondrial variants exerting male-biases in effect have come to light in bilaterians. These cases aside, it remains unknown whether the mitochondrial genetic variation affecting phenotypic expression, and in particular reproductive performance, in bilaterians is routinely comprised of sex-biased or sex-specific variation. If selection consistently favours mtDNA variants that augment female fitness, but at cost to males, this could shape patterns of pleiotropy and lead to negative intersexual correlations across mtDNA haplotypes. Here, we show that genetic variation across naturally occurring mitochondrial haplotypes affects components of reproductive success in both sexes, in the fruit fly Drosophila melanogaster. We find that intrasexual correlations across mitochondrial haplotypes, for components of reproductive success, are generally positive, while intersexual correlations are negative. These results accord with theoretical predictions, suggesting that maternal inheritance has led to the fixation of numerous mutations of sexually antagonistic effect

    SUPPLEMENTARY MATERIAL from Mitonuclear interactions modulate nutritional preference

    No full text
    In nature, organisms are faced with constant nutritional options which fuel key life-history traits. Studies have shown that species can actively make nutritional decisions based on internal and external cues. Metabolism itself is underpinned by complex genomic interactions involving components from both nuclear and mitochondrial genomes. Products from these two genomes must coordinate how nutrients are extracted, used and recycled. Given the complicated nature of metabolism, it is not well understood how nutritional choices are affected by mitonuclear interactions. This is under the rationale that changes in genomic interactions will affect metabolic flux and change physiological requirements. To this end we used a large Drosophila mitonuclear genetic panel, comprising 9 isogenic nuclear genomes coupled to 9 mitochondrial haplotypes, giving a total of 81 different mitonuclear genotypes. We use a capillary-based feeding assay to screen this panel for dietary preference between carbohydrate and protein. We find significant mitonuclear interactions modulating nutritional choices, with these epistatic interaction also being dependent on sex. Our findings support the notion that complex genomic interactions can place a constraint on metabolic flux. This work gives us deeper insights on how key metabolic interactions can have large implications on behaviour
    corecore