17 research outputs found

    Bioinformatic analyses identifies novel protein-coding pharmacogenomic markers associated with paclitaxel sensitivity in NCI60 cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paclitaxel is a microtubule-stabilizing drug that has been commonly used in treating cancer. Due to genetic heterogeneity within patient populations, therapeutic response rates often vary. Here we used the NCI60 panel to identify SNPs associated with paclitaxel sensitivity. Using the panel's GI50 response data available from Developmental Therapeutics Program, cell lines were categorized as either sensitive or resistant. PLINK software was used to perform a genome-wide association analysis of the cellular response to paclitaxel with the panel's SNP-genotype data on the Affymetrix 125 k SNP array. FastSNP software helped predict each SNP's potential impact on their gene product. mRNA expression differences between sensitive and resistant cell lines was examined using data from BioGPS. Using Haploview software, we investigated for haplotypes that were more strongly associated with the cellular response to paclitaxel. Ingenuity Pathway Analysis software helped us understand how our identified genes may alter the cellular response to paclitaxel.</p> <p>Results</p> <p>43 SNPs were found significantly associated (FDR < 0.005) with paclitaxel response, with 10 belonging to protein-coding genes (<it>CFTR</it>, <it>ROBO1</it>, <it>PTPRD</it>, <it>BTBD12</it>, <it>DCT</it>, <it>SNTG1</it>, <it>SGCD</it>, <it>LPHN2</it>, <it>GRIK1</it>, <it>ZNF607</it>). SNPs in <it>GRIK1</it>, <it>DCT</it>, <it>SGCD </it>and <it>CFTR </it>were predicted to be intronic enhancers, altering gene expression, while SNPs in <it>ZNF607 </it>and <it>BTBD12 </it>cause conservative missense mutations. mRNA expression analysis supported these findings as <it>GRIK1</it>, <it>DCT</it>, <it>SNTG1</it>, <it>SGCD </it>and <it>CFTR </it>showed significantly (p < 0.05) increased expression among sensitive cell lines. Haplotypes found in <it>GRIK1, SGCD, ROBO1, LPHN2</it>, and <it>PTPRD </it>were more strongly associated with response than their individual SNPs.</p> <p>Conclusions</p> <p>Our study has taken advantage of available genotypic data and its integration with drug response data obtained from the NCI60 panel. We identified 10 SNPs located within protein-coding genes that were not previously shown to be associated with paclitaxel response. As only five genes showed differential mRNA expression, the remainder would not have been detected solely based on expression data. The identified haplotypes highlight the role of utilizing SNP combinations within genomic loci of interest to improve the risk determination associated with drug response. These genetic variants represent promising biomarkers for predicting paclitaxel response and may play a significant role in the cellular response to paclitaxel.</p

    Low intensity exercise attenuates disease progression and stimulates cell proliferation in the spinal cord of a mouse model with progressive motor neuronopathy

    No full text
    Physical exercise has been shown to stimulate neurogenesis, increase resistance to brain trauma and disease, improve learning and increase levels of growth factors. We show that low intensity exercise has profound effects on the phenotype of a mouse mutant with progressive motor neuronopathy. These animals normally die at 47 days of age due to motoneuron loss and muscle atrophy. When mice undergo low intensity exercise, their lifespan increased by 74%, they exhibited a decreased loss of motoneurons, improved muscle integrity and a twofold increase in proliferating cells in the spinal cord. The molecular mechanism of neuroprotection may be related to insulin-like-growth factor 1 (IGF-1) since injections of antibodies to IGF-1 abrogated the effects of exercise on the increased life-span. Thus IGF-1 may act as a possible "exercise-induced" neuroprotective factor

    Behavioral, neurochemical and morphological changes induced by the overexpression of munc18-1a in brain of mice: relevance to schizophrenia

    Get PDF
    Overexpression of the mammalian homolog of the unc-18 gene (munc18-1) has been described in the brain of subjects with schizophrenia. Munc18-1 protein is involved in membrane fusion processes, exocytosis and neurotransmitter release. A transgenic mouse strain that overexpresses the protein isoform munc18-1a in the brain was characterized. This animal displays several schizophrenia-related behaviors, supersensitivity to hallucinogenic drugs and deficits in prepulse inhibition that reverse after antipsychotic treatment. Relevant brain areas (that is, cortex and striatum) exhibit reduced expression of dopamine D-1 receptors and dopamine transporters together with enhanced amphetamine-induced in vivo dopamine release. Magnetic resonance imaging demonstrates decreased gray matter volume in the transgenic animal. In conclusion, the mouse overexpressing brain munc18-1a represents a new valid animal model that resembles functional and structural abnormalities in patients with schizophrenia.Brainco Biopharma SL; Centro de Investigacion Biomedica en Red de Salud Mental; Instituto de Salud Carlos III (CIBERSAM); Spanish MICINN; FEDER SAF2009-08460, SAF2010-21948,AGL2009-11358, SAF2011-29918, PI10/02986, CP08/00017,CEN-20101014; Basque Government PR10UN01 IT-199/07; University of the Basque Country (UPV/EHU); Complutense University of Madrid UCM GR42/10-96207

    Cytoskeletal genes regulation by chronic morphine treatment in rat striatum.

    No full text
    It has been previously suggested that morphine can regulate the expression and function of some proteins of the cytoskeleton. In the present study, we used real-time quantitative polymerase chain reaction to examine the effects of chronic morphine administration, in rat striatum, on 14 proteins involved in microtubule polymerization and stabilization, intracellular trafficking, and serving as markers of neuronal growth and degeneration. Chronic morphine treatment led to modulation of the mRNA level of seven of the 14 genes tested. Glial fibrillary acidic protein (Gfap) and activity-regulated cytoskeleton-associated protein (Arc) mRNA were upregulated, while growth associated protein (Gap43), clathrin heavy chain (Cltc), alpha-tubulin, Tau, and stathmin were downregulated. In order to determine if the regulation of an mRNA correlates with a modulation of the expression of the corresponding protein, immunoblot analyses were performed. With the exception of Gap43, the levels of Cltc, Gfap, Tau, stathmin, and alpha-tubulin proteins were found to be in good agreement with those from mRNA quantification. These results demonstrate that neuroadaptation to chronic morphine administration in rat striatum implies modifications of the expression pattern of several genes and proteins of the cytoskeleton and cytoskeleton-associated components
    corecore