16 research outputs found

    Preliminary Water Assessment Reports of The Test Basins of The Watch Project

    Get PDF
    This report presents the initial plans of the case studies how they link to rest of the Watch project and on which water resources they will focus. This report will function as the basis for further discussions on how to improve the integration of the case studies within the project and to develop a more general protocol for each of the case studies. Currently 5 catchments are used within the Watch project, they differ in climatic and hydro-geological features and expected climate changes: the Glomma River basin (Eastern Norway), the upper Guadiana basin (Central Spanish Plateau), the Nitra River basin (central Slovakia), the Upper-Elbe basin (part of the Elbe River) and the island of Crete. Also the water resources issues vary over these cases. Agricultural (and domestic) water use is under pressure in the Mediterranean catchments probably aggravating with the expected increase in drought frequency under future climate. The Norwegian catchment provides hydropower services under threat of precipitation increase rather than decrease. The central European catchments are threatened mainly by increased variability, i.e. increased frequencies of extremes in a densely populated environment, and river flow may need additional buffers (reservoirs) to reduce floodrisk and store water for dry period

    The European 2015 drought from a hydrological perspective

    Get PDF
    In 2015 large parts of Europe were affected by drought. In this paper, we analyze the hydrological footprint (dynamic development over space and time) of the drought of 2015 in terms of both severity (magnitude) and spatial extent and compare it to the extreme drought of 2003. Analyses are based on a range of low flow and hydrological drought indices derived for about 800 streamflow records across Europe, collected in a community effort based on a common protocol. We compare the hydrological footprints of both events with the meteorological footprints, in order to learn from similarities and differences of both perspectives and to draw conclusions for drought management. The region affected by hydrological drought in 2015 differed somewhat from the drought of 2003, with its center located more towards eastern Europe. In terms of low flow magnitude, a region surrounding the Czech Republic was the most affected, with summer low flows that exhibited return intervals of 100 years and more. In terms of deficit volumes, the geographical center of the event was in southern Germany, where the drought lasted a particularly long time. A detailed spatial and temporal assessment of the 2015 event showed that the particular behavior in these regions was partly a result of diverging wetness preconditions in the studied catchments. Extreme droughts emerged where preconditions were particularly dry. In regions with wet preconditions, low flow events developed later and tended to be less severe. For both the 2003 and 2015 events, the onset of the hydrological drought was well correlated with the lowest flow recorded during the event (low flow magnitude), pointing towards a potential for early warning of the severity of streamflow drought. Time series of monthly drought indices (both streamflow- and climate-based indices) showed that meteorological and hydrological events developed differently in space and time, both in terms of extent and severity (magnitude). These results emphasize that drought is a hazard which leaves different footprints on the various components of the water cycle at different spatial and temporal scales. The difference in the dynamic development of meteorological and hydrological drought also implies that impacts on various water-use sectors and river ecology cannot be informed by climate indices alone. Thus, an assessment of drought impacts on water resources requires hydrological data in addition to drought indices based solely on climate data. The transboundary scale of the event also suggests that additional efforts need to be undertaken to make timely pan-European hydrological assessments more operational in the future

    Wpływ suszy hydrologicznej na parametry ilościowe i jakościowe wód powierzchniowych i podziemnych w zlewni Torysy, wschodnia Słowacja

    No full text
    Surface water and groundwater quantitative and qualitative parameters depend on many factors, among which the climatic conditions and human influence play an important role. Hydrological drought affects first the surface water and with a certain time-lag also the groundwater. Human influence affects both the quantitative and qualitative properties. Hydrological drought in surface water and groundwater in the area of the upper Torysa River catchment was derived using the threshold level method for streamflow and baseflow values. Baseflow values were calculated using the local minimum method. In the end, number of surface water and groundwater drought periods was compared stressing the length of the drought period and time shift between the starting dates. Changes in chemical composition of surface and groundwater during drought periods were studied and analysed.Parametry ilościowe i jakościowe wód powierzchniowych i podziemnych zależą od wielu czynników, spośród których ważną rolę odgrywają warunki klimatyczne i działalność człowieka. Susza meteorologiczna początkowo oddziaływuje na wody powierzchniowe, a po pewnym czasie również na wody podziemne. Działalność człowieka wpływa zarówno na jakościowe, jak i ilościowe cechy wód. Susza hydrologiczna w wodach powierzchniowych i podziemnych w zlewni górnej Torysy została określona metodą poziomu progowego dla przepływu bazowego i przepływu całkowitego. Wartości przepływu bazowego obliczono metodą lokalnych minimów. Ostatecznie, liczba okresów suszy dla wód powierzchniowych i podziemnych została wyznaczona przez kompresję okresów suszy w ruchomych interwałach czasowych. Przeprowadzone analizy i prace studialne wykazały zmiany składu chemicznego wód w okresach suszy

    Streamflow trends in Europe: evidence from a dataset of near-natural catchments

    Get PDF
    Streamflow observations from near-natural catchments are of paramount importance for detection and attribution studies, evaluation of large-scale model simulations, and assessment of water management, adaptation and policy options. This study investigates streamflow trends in a newly-assembled, consolidated dataset of near-natural streamflow records from 441 small catchments in 15 countries across Europe. The period 1962–2004 provided the best spatial coverage, but analyses were also carried out for longer time periods (with fewer stations), starting in 1932, 1942 and 1952. Trends were calculated by the slopes of the Kendall-Theil robust line for standardized annual and monthly streamflow, as well as for summer low flow magnitude and timing. A regionally coherent picture of annual streamflow trends emerged, with negative trends in southern and eastern regions, and generally positive trends elsewhere. Trends in monthly streamflow for 1962–2004 elucidated potential causes for these changes, as well as for changes in hydrological regimes across Europe. Positive trends were found in the winter months in most catchments. A marked shift towards negative trends was observed in April, gradually spreading across Europe to reach a maximum extent in August. Low flows have decreased in most regions where the lowest mean monthly flow occurs in summer, but vary for catchments which have flow minima in winter and secondary low flows in summer. The study largely confirms findings from national and regional scale trend analyses, but clearly adds to these by confirming that these tendencies are part of coherent patterns of change, which cover a much larger region. The broad, continental-scale patterns of change are mostly congruent with the hydrological responses expected from future climatic changes, as projected by climate models. The patterns observed could hence provide a valuable benchmark for a number of different studies and model simulations

    Transitional accommodation for refugees

    Get PDF
    International audienceIt is generally accepted that drought is one of the most costly weather-related natural hazards. In 2015, a long-lasting drought hit Europe, particularly affecting central and eastern Europe. In some regions it was the driest (North Slovakia) and in others (Czech Republic and Poland) it was the second driest summer of the last 50 years (following 2003). Key questions are: (i) how extreme are these events, not only in terms of hydro-meteorological characteristics but also impacts? and (ii) how are these impacts managed

    Lessons from the 2018-2019 European droughts: a collective need for unifying drought risk management

    Get PDF
    Drought events and their impacts vary spatially and temporally due to diverse pedo-climatic and hydrologic conditions, as well as variations in exposure and vulnerability, such as demographics and response actions. While hazard severity and frequency of past drought events have been studied in detail, little is known about the effect of drought management strategies on the actual impacts and how the hazard is perceived by relevant stakeholders. In a continental study, we characterised and assessed the impacts and the perceptions of two recent drought events (2018 and 2019) in Europe and examined the relationship between management strategies and drought perception, hazard, and impact. The study was based on a pan-European survey involving national representatives from 28 countries and relevant stakeholders responding to a standard questionnaire. The survey focused on collecting information on stakeholders' perceptions of drought, impacts on water resources and beyond, water availability, and current drought management strategies on national and regional scales. The survey results were compared with the actual drought hazard information registered by the European Drought Observatory (EDO) for 2018 and 2019. The results highlighted high diversity in drought perception across different countries and in values of the implemented drought management strategies to alleviate impacts by increasing national and sub-national awareness and resilience. The study identifies an urgent need to further reduce drought impacts by constructing and implementing a European macro-level drought governance approach, such as a directive, which would strengthen national drought management and mitigate damage to human and natural assets
    corecore