3,034 research outputs found

    Stroboscopic Goggles for Reduction of Motion Sickness

    Get PDF
    A device built around a pair of electronic shutters has been demonstrated to be effective as a prototype of stroboscopic goggles or eyeglasses for preventing or reducing motion sickness. The momentary opening of the shutters helps to suppress a phenomenon that is known in the art as retinal slip and is described more fully below. While a number of different environmental factors can induce motion sickness, a common factor associated with every known motion environment is sensory confusion or sensory mismatch. Motion sickness is a product of misinformation arriving at a central point in the nervous system from the senses from which one determines one s spatial orientation. When information from the eyes, ears, joints, and pressure receptors are all in agreement as to one s orientation, there is no motion sickness. When one or more sensory input(s) to the brain is not expected, or conflicts with what is anticipated, the end product is motion sickness. Normally, an observer s eye moves, compensating for the anticipated effect of motion, in such a manner that the image of an object moving relatively to an observer is held stationary on the retina. In almost every known environment that induces motion sickness, a change in the gain (in the signal-processing sense of gain ) of the vestibular system causes the motion of the eye to fail to hold images stationary on the retina, and the resulting motion of the images is termed retinal slip. The present concept of stroboscopic goggles or eyeglasses (see figure) is based on the proposition that prevention of retinal slip, and hence, the prevention of sensory mismatch, can be expected to reduce the tendency toward motion sickness. A device according to this concept helps to prevent retinal slip by providing snapshots of the visual environment through electronic shutters that are brief enough that each snapshot freezes the image on each retina. The exposure time for each snapshot is less than 5 ms. In the event that a higher rate of strobing is necessary for adequate viewing of the changing scene during rapid head movements, the rate of strobing (but not the exposure time) can be controlled in response to the readings of rate-of-rotation sensors attached to the device

    Stroboscopic Vision as a Treatment for Space Motion Sickness

    Get PDF
    Results obtained from space flight indicate that most space crews will experience some symptoms of motion sickness causing significant impact on the operational objectives that must be accomplished to assure mission success. Based on the initial work of Melvill Jones we have evaluated stroboscopic vision as a method of preventing motion sickness. Given that the data presented by professor Melvill Jones were primarily post hoc results following a study not designed to investigate motion sickness, it is unclear how motion sickness results were actually determined. Building on these original results, we undertook a three part study that was designed to investigate the effect of stroboscopic vision (either with a strobe light or LCD shutter glasses) on motion sickness using: (1) visual field reversal, (2) Reading while riding in a car (with or without external vision present), and (3) making large pitch head movements during parabolic flight

    A Countermeasure for Space Motion Sickness

    Get PDF
    Overall, the results obtained in both the U.S. and the Russian space programs indicate that most space crews will experience some symptoms of motion sickness (MS) causing significant impact on the operational objectives that must be accomplished to assure mission success. At this time the primary countermeasure for MS requires the administration of Promethazine. Promethazine is not a benign drug, and is most frequently administered just prior to the sleep cycle to prevent its side effects from further compromising mission objectives. Clearly other countermeasures for SMS must be developed. Currently the primary focus is on two different technologies: (1) developing new and different pharmacological compounds with less significant side effects, (2) preflight training. The primary problem with all of these methods for controlling MS is time. New drugs that may be beneficial are years from testing and development, and preflight training requires a significant investment of crew time during an already intensive pre-launch schedule. Granted, motion sickness symptoms can be minimized with either of the two methods detailed above, however, it may be possible to develop a countermeasure that does not require either extensive adaptation time or exposure to motion sickness. Approximately 25 years ago Professor Geoffrey Melvill Jones presented his work on adaptation of the vestibuloocular reflex (VOR) using optically reversed vision (left-right prisms) during head rotations in the horizontal plane. It was of no surprise that most subjects experienced motion sickness while wearing the optically reversing prisms. However, a serendipitous finding emerged during this research showing that the same subjects did not experience motion sickness symptoms when wearing the reversing prisms under stroboscopic illumination. The mechanism, by which this side-effect was believed to have occurred, is not clearly understood. However, the fact that no motion sickness was ever noted, suggests the possibility of producing functionally useful adaptation during space flight without the penalty of disabling motion sickness by controlling the rate of the adaptive process by means of an appropriate stroboscopically presented environment. After several recent meetings with Professor Melvill Jones, we were encouraged to repeat the motion sickness portions of his and Mandl's 1981 stroboscopic experiment. In conducting this experiment we used a randomized cross-over design where subjects were randomly assigned to either a stroboscopic flash or no strobe for their first exposure in the experimental design. Twenty subjects (19 subjects completed the study) read a short passage from Treasure Island mounted on the wall approximately 1 m from their eyes while wearing left-right reversing prisms. The strobe on time of 3 microseconds and flash frequency of 4 Hz was set to equal that used in the original study. Motion sickness was scored using a modified Miller and Graybiel scale that we constructed to include symptoms that may be elicited under conditions where reversing prisms are worn. On this scale a score of 5 represented Malaise IIa (mild motion sickness) and a score of 8 or above is approaching frank sickness. Symptoms were tracked and recorded every 5 min during the task. Testing was limited to 30 min unless the subject had reached the MIIa score, at which time the test was terminated. Performance under stroboscopic illumination was significantly better than when the subjects read under normal room illumination while wearing the left-right reversing prisms. Based on these results we developed a goggle system using LCD material that can be strobed. To evaluate the effectiveness of stroboscopic goggles we tested an additional 9 subjects in addition to retesting 10 used in the stroboscopic pilot study described above. These 19 subjects wore a pair of strobing LCD goggles that could be cycled at 4 Hz. These subjects wore the goggles while also wearing left-right reversg prisms. Results while wearing the goggles showed that none of the 19 subjects scored at the MIIa level on the motion sickness rating scale. When the goggles did not flash (no strobe), 11 of the 19 developed symptoms above the MIIa criteria. As a countermeasure the goggles seem to be effective, even with an on time of 10 msec (time the goggles are clear). We have also collected anecdotal data, from our personnel in the Neuroscience Laboratory at the Johnson Space Center, suggesting that the goggles may effective in preventing carsickness

    The ``Outside-In'' Outburst of HT Cassiopeiae

    Get PDF
    We present results from photometric observations of the dwarf nova system HT Cas during the eruption of November 1995. The data include the first two--colour observations of an eclipse on the rise to outburst. They show that during the rise to outburst the disc deviates significantly from steady state models, but the inclusion of an inner-disc truncation radius of about 4 RwdR_{wd} and a ``flared'' disc of semi-opening angle of 1010^{\circ} produces acceptable fits. The disc is found to have expanded at the start of the outburst to about 0.41RL10.41R_{L1}, as compared to quiescent measurements. The accretion disc then gradually decreases in radius reaching <0.32RL1<0.32R_{L1} during the last stages of the eruption. Quiescent eclipses were also observed prior to and after the eruption and a revised ephemeris is calculated.Comment: 9 pages, 11 figures, to appear in MNRA

    The Measurement of Language Lateralization with Functional Transcranial Doppler and Functional MRI: A Critical Evaluation

    Get PDF
    Cerebral language lateralization can be assessed in several ways. In healthy subjects, functional MRI (fMRI) during performance of a language task has evolved to be the most frequently applied method. Functional transcranial Doppler (fTCD) may provide a valid alternative, but has been used rarely. Both techniques have their own strengths and weaknesses and as a result may be applied in different fields of research. Until now, only one relatively small study (n = 13) investigated the correlation between lateralization indices (LIs) measured by fTCD and fMRI and showed a remarkably high correlation. To further evaluate the correlation between LIs measured with fTCD and fMRI, we compared LIs of 22 healthy subjects (12 left- and 10 right-handed) using the same word generation paradigm for the fTCD as for the fMRI experiment. LIs measured with fTCD were highly but imperfectly correlated with LIs measured with fMRI (Spearman's rho = 0.75, p < 0.001). The imperfectness of the correlation can partially be explained by methodological restrictions of fMRI as well as fTCD. Our results suggest that fTCD can be a valid alternative for fMRI to measure lateralization, particularly when costs or mobility are important factors in the study design

    Ancient Egypt 1916 Part 3

    Get PDF
    Part 3 of the 1916 Ancient Egypt books. Contents include early forms of the cross, cutting granite, new portions of the annals, and the temple of Rameses, Abydos.https://knowledge.e.southern.edu/kweeks_coll/1007/thumbnail.jp

    Exciton spin relaxation in InAs/InGaAlAs/InP(001) quantum dashes emitting near 1.55 μm

    Get PDF
    This research was supported by The National Science Center Grant MAESTRO No. 2011/02/A/ST3/00152. Ł. D. acknowledges the financial support from the Foundation for Polish Science within the START fellowship.Exciton spin and related optical polarization in self-assembled InAs/In0.53Ga0.23Al0.24As/InP(001) quantum dashes emitting at 1.55 μm are investigated by means of polarization- and time-resolved photoluminescence, as well as photoluminescence excitation spectroscopy, at cryogenic temperature. We investigate the influence of highly non-resonant and quasi-resonant optical spin pumping conditions on spin polarization and spin memory of the quantum dash ground state. We show that a spin pumping scheme, utilizing the longitudinal-optical-phonon-mediated coherent scattering process, can lead to the polarization degree above 50%. We discuss the role of intrinsic asymmetries in the quantum dash that influence values of the degree of polarization and its time evolution.PostprintPeer reviewe

    Modification of Eccentric Gaze-Holding

    Get PDF
    Clear vision and accurate localization of objects in the environment are prerequisites for reliable performance of motor tasks. Space flight confronts the crewmember with a stimulus rearrangement that requires adaptation to function effectively with the new requirements of altered spatial orientation and motor coordination. Adaptation and motor learning driven by the effects of cerebellar disorders may share some of the same demands that face our astronauts. One measure of spatial localization shared by the astronauts and those suffering from cerebellar disorders that is easily quantified, and for which a neurobiological substrate has been identified, is the control of the angle of gaze (the "line of sight"). The disturbances of gaze control that have been documented to occur in astronauts and cosmonauts, both in-flight and postflight, can be directly related to changes in the extrinsic gravitational environment and intrinsic proprioceptive mechanisms thus, lending themselves to description by simple non-linear statistical models. Because of the necessity of developing robust normal response populations and normative populations against which abnormal responses can be evaluated, the basic models can be formulated using normal, non-astronaut test subjects and subsequently extended using centrifugation techniques to alter the gravitational and proprioceptive environment of these subjects. Further tests and extensions of the models can be made by studying abnormalities of gaze control in patients with cerebellar disease. A series of investigations were conducted in which a total of 62 subjects were tested to: (1) Define eccentric gaze-holding parameters in a normative population, and (2) explore the effects of linear acceleration on gaze-holding parameters. For these studies gaze-holding was evaluated with the subjects seated upright (the normative values), rolled 45 degrees to both the left and right, or pitched back 30 and 90 degrees. In a separate study the further effects of acceleration on gaze stability was examined during centrifugation (+2 G (sub x) and +2 G (sub z) using a total of 23 subjects. In all of our investigations eccentric gaze-holding was established by having the subjects acquire an eccentric target (+/-30 degrees horizontal, +/- 15 degrees vertical) that was flashed for 750 msec in an otherwise dark room. Subjects were instructed to hold gaze on the remembered position of the flashed target for 20 sec. Immediately following the 20 sec period, subjects were cued to return to the remembered center position and to hold gaze there for an additional 20 sec. Following this 20 sec period the center target was briefly flashed and the subject made any corrective eye movement back to the true center position. Conventionally, the ability to hold eccentric gaze is estimated by fitting the natural log of centripetal eye drifts by linear regression and calculating the time constant (G) of these slow phases of "gaze-evoked nystagmus". However, because our normative subjects sometimes showed essentially no drift (tau (sub c) = m), statistical estimation and inference on the effect of target direction was performed on values of the decay constant theta = 1/(tau (sub c)) which we found was well modeled by a gamma distribution. Subjects showed substantial variance of their eye drifts, which were centrifugal in approximately 20 % of cases, and > 40% for down gaze. Using the ensuing estimated gamma distributions, we were able to conclude that rightward and leftward gaze holding were not significantly different, but that upward gaze holding was significantly worse than downward (p<0.05). We also concluded that vertical gaze holding was significantly worse than horizontal (p<0.05). In the case of left and right roll, we found that both had a similar improvement to horizontal gaze holding (p<0.05), but didn't have a significant effect on vertical gaze holding. For pitch tilts, both tilt angles significantly decreased gaze-holding ility in all directions (p<0.05). Finally, we found that hyper-g centrifugation significantly decreased gaze holding ability in the vertical plane. The main findings of this study are as follows: (1) vertical gaze-holding is less stable than horizontal, (2) gaze-holding to upward targets is less stable than to downward targets, (3) tilt affects gaze holding, and (4) hyper-g affects gaze holding. This difference between horizontal and vertical gaze-holding may be ascribed to separate components of the velocity-to-position neural integrator for eye movements, and to differences in orbital mechanics. The differences between upward and downward gaze-holding may be ascribed to an inherent vertical imbalance in the vestibular system. Because whole body tilt and hyper-g affects gaze-holding, it is implied that the otolith organs have direct connections to the neural integrator and further studies of astronaut gaze-holding are warranted. Our statistical method for representing the range of normal eccentric gaze stability can be readily applied to normals who maybe exposed to environments which may modify the central integrator and require monitoring, and to evaluate patients with gaze-evoked nystagmus by comparing to the above established normative criteria

    Reactive scattering of H2 from Cu(100): comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment

    Get PDF
    We present new experimental and theoretical results for reactive scattering of dihydrogen from Cu(100). In the new experiments, the associative desorption of H2 is studied in a velocity resolved and final rovibrational state selected manner, using time-of-flight techniques in combination with resonance-enhanced multi-photon ionization laser detection. Average desorption energies and rota- tional quadrupole alignment parameters were obtained in this way for a number of (v = 0, 1) ro- tational states, v being the vibrational quantum number. Results of quantum dynamics calculations based on a potential energy surface computed with a specific reaction parameter (SRP) density func- tional, which was derived earlier for dihydrogen interacting with Cu(111), are compared with the results of the new experiments and with the results of previous molecular beam experiments on sticking of H2 and on rovibrationally elastic and inelastic scattering of H2 and D2 from Cu(100). The calculations use the Born-Oppenheimer and static surface approximations. With the functional derived semi-empirically for dihydrogen + Cu(111), a chemically accurate description is obtained of the molecular beam experiments on sticking of H2 on Cu(100), and a highly accurate descrip- tion is obtained of rovibrationally elastic and inelastic scattering of D2 from Cu(100) and of the orientational dependence of the reaction of (v = 1, j = 2 − 4) H2 on Cu(100). This suggests that a SRP density functional derived for H2 interacting with a specific low index face of a metal will yield accurate results for H2 reactively scattering from another low index face of the same metal, and that it may also yield accurate results for H2 interacting with a defected (e.g., stepped) surface of that same metal, in a system of catalytic interest. However, the description that was obtained of the average desorption energies, of rovibrationally elastic and inelastic scattering of H2 from Cu(100), and of the orientational dependence of reaction of (v = 0, j = 3 − 5, 8) H2 on Cu(100) compares less well with the available experiments. More research is needed to establish whether more accurate SRP-density functional theory dynamics results can be obtained for these observables if surface atom motion is added to the dynamical model. The experimentally and theoretically found dependence of the rotational quadrupole alignment parameter on the rotational quantum number provides evidence for rotational enhancement of reaction at low translational energies.Fil: Sementa, L.. Leiden University; Países Bajos. Istituto per i Processi Chimico-Fisici of the Consiglio Nazionale delle Ricerche; ItaliaFil: Wijzenbroek, M.. Leiden University; Países BajosFil: Van Kolck, B. J.. Leiden University; Países BajosFil: Somers, M. F.. Leiden University; Países BajosFil: Al-Halabi, A.. Leiden University; Países BajosFil: Busnengo, Heriberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Olsen, R. A.. Leiden University; Países Bajos. SINTEF Materials and Chemistry; NoruegaFil: Kroes, G. J.. Leiden University; Países BajosFil: Rutkowski, M.. Westfalische Wilhelms Universitat; AlemaniaFil: Thewes, C.. Westfalische Wilhelms Universitat; AlemaniaFil: Kleimeier, N. F.. Westfalische Wilhelms Universitat; AlemaniaFil: Zacharias, H.. Westfalische Wilhelms Universitat; Alemani
    corecore