895 research outputs found

    Isospin diffusion in semi-peripheral 58Ni^{58}Ni + 197Au^{197}Au collisions at intermediate energies (II): Dynamical simulations

    Get PDF
    We study isospin effects in semi-peripheral collisions above the Fermi energy by considering the symmetric 58Ni^{58}Ni + 58Ni^{58}Ni and the asymmetric reactions 58Ni^{58}Ni + 197Au^{197}Au over the incident energy range 52-74 A MeV. A microscopic transport model with two different parameterizations of the symmetry energy term is used to investigate the isotopic content of pre-equilibrium emission and the N/Z diffusion process. Simulations are also compared to experimental data obtained with the INDRA array and bring information on the degree of isospin equilibration observed in Ni + Au collisions. A better overall agreement between data and simulations is obtained when using a symmetry term which linearly increases with nuclear density

    Comparison of fragment partitions production in peripheral and central collisions

    Get PDF
    Ensembles of single-source events, produced in peripheral and central collisions and correponding respectively to quasi-projectile and quasi-fusion sources, are analyzed. After selections on fragment kinematic properties, excitation energies of the sources are derived using the calorimetric method and the mean behaviour of fragments of the two ensembles are compared. Differences observed in their partitions, especially the charge asymmetry, can be related to collective energy deposited in the systems during the collisions.Comment: 7 pages, 2 figures, presented at the International Workshop on Multifragmentation and Related Topics, Caen France, 4-7th november 2007 (IWM2007

    Break-up fragments excitation and the freeze-out volume

    Full text link
    We investigate, in microcanonical multifragmentation models, the influence of the amount of energy dissipated in break-up fragments excitation on freeze-out volume determination. Assuming a limiting temperature decreasing with nuclear mass, we obtain for the Xe+Sn at 32 MeV/nucleon reaction [J. D. Frankland et al., Nucl. Phys. A689, 905 (2001); A689, 940 (2001)] a freeze-out volume almost half the one deduced using a constant limiting temperature.Comment: 11 pages, 6 figure

    Kinetic energy spectra for fragments and break-up density in multifragmentation

    Get PDF
    We investigate the possibility, in nuclear fragmentation, to extract information on nuclear density at break-up from fragment kinetic energy spectra using a simultaneous scenario for fragment emission. The conclusions we derive are different from the recently published results of Viola et al. [Phys. Rev. Lett. 93, (2004), 132701] assuming a sequential fragment emission and claiming that the experimentally observed decrease of peak centroids for kinetic energy spectra of fragments with increasing bombarding energy is due to a monotonic decrease of the break-up density.Comment: 6 pages, 3 figure

    Advancement in the understanding of multifragmentation and phase transition for hot nuclei

    Get PDF
    Recent advancement on the knowledge of multifragmentation and phase transition for hot nuclei is reported. It concerns i) the influence of radial collective energy on fragment partitions and the derivation of general properties of partitions in presence of such a collective energy, ii) a better knowledge of freeze-out properties obtained by means of a simulation based on all the available experimental information and iii) the quantitative study of the bimodal behaviour of the heaviest fragment charge distribution for fragmenting hot heavy quasi-projectiles which allows, for the first time, to estimate the latent heat of the phase transition.Comment: 9 pages, Proceedings of IWM09, November 4-7, Catania (Italy

    Status and performances of the FAZIA project

    Get PDF
    FAZIA is designed for detailed studies of the isospin degree of freedom, extending to the limits the isotopic identification of charged products from nuclear collisions when using silicon detectors and CsI(Tl) scintillators. We show that the FAZIA telescopes give isotopic identification up to Z∌\sim25 with a Δ\DeltaE-E technique. Digital Pulse Shape Analysis makes possible elemental identification up to Z=55 and isotopic identification for Z=1-10 when using the response of a single silicon detector. The project is now in the phase of building a demonstrator comprising about 200 telescopes

    Freeze-out volume in multifragmentation - dynamical simulations

    Get PDF
    Stochastic mean-field simulations for multifragmenting sources at the same excitation energy per nucleon have been performed. The freeze-out volume, a concept which needs to be precisely defined in this dynamical approach, was shown to increase as a function of three parameters: freeze-out instant, fragment multiplicity and system size.Comment: Submitted to Eur. Phys. J. A - march 200
    • 

    corecore