293 research outputs found

    Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle

    Get PDF
    Peridotitic xenoliths in basaltic andesites from Batan island in the Luzon arc contain silica-rich (broadly dacitic) hydrous melt inclusions that were likely trapped when these rocks were within the upper mantle wedge underlying the arc. These melt inclusions have been previously interpreted to be slab-derived melts. We tested this hypothesis by analyzing the oxygen isotope compositions of these inclusions with an ion microprobe. The melt inclusions from Batan xenoliths have δ 18OVSMOW values of 6.45 ± 0.51‰. These values are consistent with the melts having been in oxygen isotope exchange equilibrium with average mantle peridotite at temperatures of ≥875°C. We suggest the δ 18O values of Batan inclusions, as well as their major and trace element compositions, can be explained if they are low-degree melts (or differentiation products of such melts) of peridotites in the mantle wedge that had previously undergone extensive melt extraction followed by metasomatism by small amounts (several percent or less) of slab-derived components. A model based on the trace element contents of Batan inclusions suggests that this metasomatic agent was an aqueous fluid extracted from subducted basalts and had many characteristics similar to slab-derived components of the sources of arc-related basalts at Batan and elsewhere. Batan inclusions bear similarities to “adakites,” a class of arc-related lava widely considered to be slab-derived melts. Our results suggest the alternative interpretation that at least some adakite-like liquids might be generated from low-degree melting of metasomatized peridotites

    Temporal variations of zooplankton biomass in the Ligurian Sea inferred from long time series of ADCP data

    Get PDF
    Abstract. Three years of 300 kHz acoustic doppler current profiler data collected in the central Ligurian Sea are analysed to investigate the variability of the zooplankton biomass and the diel vertical migration in the upper thermocline. After a pre-processing phase aimed at avoiding the slant range attenuation, hourly volume backscattering strength time series are obtained. Despite the lack of concurrent net samples collection, different migration patterns are identified and their temporal variability examined by means of time–frequency analysis. The effect of changes in the environmental condition is also investigated. The highest zooplankton biomasses are observed in April–May just after the peak of surface primary production in March–April. The main migration pattern found here points to a "nocturnal" migration, with zooplankton organisms occurring deeper in the water column during the day and shallower at night. Also, twilight migration is highlighted during this study. The largest migrations are recorded in November–December, corresponding to lowest backscattering strength values and they are likely attributable to larger and more active organisms (i.e. euphausiids and mesopelagic fish). The results suggest further applications of the available historical acoustic doppler current profiler time series

    Upper layer current variability in the Central Ligurian Sea

    Get PDF
    Abstract. Long-time series of surface currents and meteorological parameters were analysed to estimate the variability of the upper layer circulation and the response to the local winds. Current meter data were collected by an upward-looking RDI Sentinel 300 kHz ADCP deployed in the Central Ligurian Sea (43°47.77' N; 9°02.85' E) near the meteo-oceanographic buoy ODAS Italia 1 for more than eight months, from 13th of September 2003 to 24th of May 2004. The ADCP sampled the upper 50 m of water column at 8 m vertical resolution and 1 h time interval; surface marine and atmospheric hourly averaged data were provided by the buoy. Currents in the sampled layer were mainly barotropic, directed North-West in accordance with the general circulation of the area, and had a mean velocity of about 18 cm/s and hourly mean peaks up to 80 cm/s. Most of the observed variability in the upper thermocline was determined by inertial currents and mesoscale activity due to the presence of the Ligurian Front. Local wind had a minor role in the near-surface circulation but induced internal waves propagating downward in the water column

    The M3A multi-sensor buoy network of the Mediterranean Sea

    Get PDF
    International audienceA network of three multi-sensor timeseries stations able to deliver real time physical and biochemical observations of the upper thermocline has been developed for the needs of the Mediterranean Forecasting System during the MFSTEP project. They follow the experience of the prototype M3A system that was developed during the MFSPP project and has been tested during a pilot pre-operational period of 22 months (2000?2001). The systems integrate sensors for physical (temperature, salinity, turbidity, current speed and direction) as well as optical and chemical observations (dissolved oxygen, chlorophyll-a, PAR, nitrate). The south Aegean system (E1-M3A) follows a modular design using independent mooring lines and collects biochemical data in the upper 100 m and physical data in the upper 500 m of the water column. The south Adriatic buoy system (E2-M3A) uses similar instrumentation but on a single mooring line and also tests a new method of pumping water samples from relatively deep layers, performing analysis in the protected ''dry'' environment of the buoy interior. The Ligurian Sea system (W1-M3A) is an ideal platform for air-sea interaction processes since it hosts a large number of meteorological sensors while its ocean instrumentation, with real time transmission capabilities, is confined in the upper 50 m layer. Despite their different architecture, the three systems have common sampling strategy, quality control and data management procedures. The network operates in the Mediterranean Sea since autumn 2004 collecting timeseries data for calibration and validation of the forecasting system as well for process studies of regional dynamics

    Primitive CaO-rich, silica-undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas

    Get PDF
    On the basis of the study of olivine-hosted melt inclusions in a calc-alkaline basalt from Batan Island (Philippines) we define a distinctive type of primitive, nepheline-normative island arc magma characterized by unusually high CaO contents (up to 19.0 wt %) that cannot be simply explained by melting of the metasomatized peridotitic mantle wedge above subducting oceanic lithosphere. CaO-rich melt inclusions with these characteristics are preserved in Fo85-90 olivine, and compositional variations among the inclusions are interpreted to reflect mixing between melts such as those found in the most CaO-rich inclusions (present in Fo90 olivine) and melts similar to primitive "normal" island arc magmas (trapped in Fo85 olivine). Compilation of primitive island arc magmas from the literature shows that whole rocks and olivine-hosted melt inclusions with CaO contents >13 wt % are found in many arc volcanoes from all over the world in addition to Batan. These inclusions occur in lavas ranging from CaO-rich ankaramites to basaltic andesites with low-CaO contents (i.e., <13 wt %). The globally occurring CaO-rich inclusions and whole rocks comprise a group that although defined on the basis of their CaO contents is compositionally distinctive when compared to island arc lavas that have lower CaO contents; for example, they have lower FeO at a given SiO2 content than most arc lavas, and they are all nepheline normative, with normative nepheline contents positively correlated with CaO contents. Variations in CaO content and normative compositions of experimental partial melts of lherzolite related to changes of pressure, temperature, and source composition suggest that there are no conditions under which partial melting of peridotite can generate melts having CaO contents and other properties comparable to those observed for the primitive, CaO-rich arc-derived melts identified here. Although melting of peridotite at high pressure in the presence of CO2 can produce CaO-rich, silica-poor liquids, we consider it unlikely that this is responsible for producing the CaO-rich, silica-undersaturated melts considered in this study because there are significant differences in nearly all other compositional characteristics between the CaO-rich arc magmas and melts known or thought to be produced by melting of carbonated peridotite. Model major element compositions of partial melts of clinopyroxene-rich lithologies (mantle pyroxenites, lower crustal pyroxenites, and eclogites) calculated using the MELTS algorithm suggest that the most CaO-rich, nepheline-normative melt inclusions and whole rocks identified here could represent intermediate to high degree (~10-40 wt %) partial melts of pyroxenites at lower crustal to upper mantle pressures. Such a hypothesis is supported by the comparison between the trace element compositions of model pyroxenite sources of the Batan CaO-rich melt inclusions and naturally occurring pyroxenites. The most likely source of the primitive CaO-rich, silica-undersaturated arc melts identified here is lower crustal and shallow upper mantle pyroxene-rich cumulates from arc environments because these cumulates have CaO concentrations at the upper end of the range observed for mantle pyroxenites. They are therefore more likely to yield partial melts with the restricted range of remarkably high CaO contents of the most CaO-rich inclusions and whole rocks identified here. Moreover, these cumulates often contain amphibole, which would lower their solidus temperatures relative to the anhydrous pyroxenite equivalents to values more consistent with those expected in deep crustal or shallow subarc environments

    Beneficial contribution to glucose homeostasis by an agro-food waste product rich in abscisic acid. A results from a randomized controlled trial

    Get PDF
    The control of glucose homeostasis represents the primary goal for the prevention and management of diabetes and prediabetes. In recent decades, the hypoglycemic hormone abscisic acid (ABA) has attracted considerable interest in the scientific literature. In this regard, the high ABA concentration in immature fruits led us to consider these food matrices as candidates for diabetes control. Therefore, the beneficial efficacy of a nutraceutical formulation based on thinned nectarines (TNs) rich in ABA was tested through a three-month, three-arm, parallel-group, randomized controlled trial (RCT) conducted on sixty-one patients with type 2 diabetes (T2D). After 3 months, both the treatments with low doses of TN (500 mg 3 times/day) and high doses of TN (750 mg 3 times/day) showed a significant reduction in glycemic parameters compared to baseline. Treatment with low doses of TN showed a greater insulin-sparing effect (fasting plasma insulin, FPI: −29.2%, p &lt; 0.05 vs. baseline) compared to the high-dose group (FPI: −16.5%, p &lt; 0.05 vs. baseline). Moreover, a significant correlation between glycemia and ABA plasmatic levels was observed for both intervention groups at baseline and after 3 months. Overall, our data reasonably support TN as a promising and innovative nutraceutical product able to contribute to the management of glucose homeostasis

    Predictive modeling of die filling of the pharmaceutical granules using the flexible neural tree

    Get PDF
    In this work, a computational intelligence (CI) technique named flexible neural tree (FNT) was developed to predict die filling performance of pharmaceutical granules and to identify significant die filling process variables. FNT resembles feedforward neural network, which creates a tree-like structure by using genetic programming. To improve accuracy, FNT parameters were optimized by using differential evolution algorithm. The performance of the FNT-based CI model was evaluated and compared with other CI techniques: multilayer perceptron, Gaussian process regression, and reduced error pruning tree. The accuracy of the CI model was evaluated experimentally using die filling as a case study. The die filling experiments were performed using a model shoe system and three different grades of microcrystalline cellulose (MCC) powders (MCC PH 101, MCC PH 102, and MCC DG). The feed powders were roll-compacted and milled into granules. The granules were then sieved into samples of various size classes. The mass of granules deposited into the die at different shoe speeds was measured. From these experiments, a dataset consisting true density, mean diameter (d50), granule size, and shoe speed as the inputs and the deposited mass as the output was generated. Cross-validation (CV) methods such as 10FCV and 5x2FCV were applied to develop and to validate the predictive models. It was found that the FNT-based CI model (for both CV methods) performed much better than other CI models. Additionally, it was observed that process variables such as the granule size and the shoe speed had a higher impact on the predictability than that of the powder property such as d50. Furthermore, validation of model prediction with experimental data showed that the die filling behavior of coarse granules could be better predicted than that of fine granules
    corecore