66 research outputs found

    Rotationally induced Penning ionization of ultracold photoassociated helium dimers

    Full text link
    We have studied photoassociation of metastable \tripS helium atoms near the \tripS-\tripP asymptote by both ion detection in a magneto-optical trap and trap-loss measurements in a magnetic trap. A detailed comparison between the results of the two experiments gives insight into the mechanism of the Penning ionization process. We have identified four series of resonances corresponding to vibrational molecular levels belonging to different rotational states in two potentials. The corresponding spin states become quasi-purely quintet at small interatomic distance, and Penning ionization is inhibited by spin conservation rules. Only a weak rotational coupling is responsible for the contamination by singlet spin states leading to a detectable ion signal. However, for one of these series Bose statistics does not enable the rotational coupling and the series detected through trap-loss does not give rise to sufficient ionization for detection.Comment: 7 pages, 4 figures, submitted to EuroPhysics Letter

    Limit on suppression of ionization in metastable neon traps due to long-range anisotropy

    Get PDF
    This paper investigates the possibility of suppressing the ionization rate in a magnetostatic trap of metastable neon atoms by spin-polarizing the atoms. Suppression of the ionization is critical for the possibility of reaching Bose-Einstein condensation with such atoms. We estimate the relevant long-range interactions for the system, consisting of electric quadrupole-quadrupole and dipole-induced dipole terms, and develop short-range potentials based on the Na_2 singlet and triplet potentials. The auto-ionization widths of the system are also calculated. With these ingredients we calculate the ionization rate for spin-polarized and for spin-isotropic samples, caused by anisotropy of the long-range interactions. We find that spin-polarization may allow for four orders of magnitude suppression of the ionization rate for Ne. The results depend sensitively on a precise knowledge of the interaction potentials, however, pointing out the need for experimental input. The same model gives a suppression ratio close to unity for metastable xenon in accordance with experimental results, due to a much increased anisotropy in this case.Comment: 15 pages including figures, LaTex/RevTex, uses epsfig.st

    Coherence properties of an atom laser

    Full text link
    We study the coherence properties of an atom laser, which operates by extracting atoms from a gaseous Bose-Einstein condensate via a two-photon Raman process, by analyzing a recent experiment. We obtain good agreement with the experimental data by solving the time-dependent Gross-Pitaevskii equation in three dimensions both numerically and with a Thomas-Fermi model. The coherence length is strongly affected by the space-dependent phase developed by the condensate when the trapping potential is turned off.Comment: 11 pages, 2 Postscript figure

    Band Gaps for Atoms in Light based Waveguides

    Full text link
    The energy spectrum for a system of atoms in a periodic potential can exhibit a gap in the band structure. We describe a system in which a laser is used to produce a mechanical potential for the atoms, and a standing wave light field is used to shift the atomic levels using the Autler-Townes effect, which produces a periodic potential. The band structure for atoms guided by a hollow optical fiber waveguide is calculated in three dimensions with quantised external motion. The size of the band gap is controlled by the light guided by the fiber. This variable band structure may allow the construction of devices which can cool atoms. The major limitation on this device would be the spontaneous emission losses.Comment: 7 pages, four postscript figures, uses revtex.sty, available through http://online.anu.edu.au/Physics/papers/atom.htm

    On the feasibility of cooling and trapping metastable alkaline-earth atoms

    Get PDF
    Metastability and long-range interactions of Mg, Ca, and Sr in the lowest-energy metastable 3P2^3P_2 state are investigated. The calculated lifetimes are 38 minutes for Mg*, 118 minutes for Ca*, and 17 minutes for Sr*, supporting feasibility of cooling and trapping experiments. The quadrupole-quadrupole long-range interactions of two metastable atoms are evaluated for various molecular symmetries. Hund's case (c) 4_g potential possesses a large 100-1000 K potential barrier. Therefore magnetic trap losses can possibly be reduced using cold metastable atoms in a stretched M=2 state. Calculations were performed in the framework of ab initio relativistic configuration interaction method coupled with the random-phase approximation.Comment: 8 pages, 2 figures; to appear in PR

    Scaling laws in velocity-selective coherent-population-trapping laser cooling

    Get PDF
    One-dimensional laser cooling based on velocity-selective coherent population trapping (VSCPT) has been investigated numerically through the solution of the optical Bloch equations and through a Monte Carlo analysis. The 1→1 and 2→2 transitions have been examined as a function of the atomic recoil frequency, the spontaneous-emission decay rate, and the Rabi frequency of the cooling laser. It has been found that for a large set of those parameters, the VSCPT cooling process may be described through scaling-law relations. The scaling laws are not valid at long atom-laser interaction times or large Rabi frequencies, where the atomic Doppler shift plays a significant role in the atomic motion evolution. Similar results for two atomic transitions suggest the validity of the scaling law for any one-dimensional VSCPT process

    Coherence Properties of an Atom Laser

    Get PDF
    We study the coherence properties of an atom laser, which operates by extracting atoms from a gaseous Bose-Einstein condensate via a two-photon Raman process, by analysing a recent experiment (Hagley et al1999 Phys. Rev. Lett.833112). We obtain good agreement with the experimental data by solving the time-dependent Gross-Pitaevskii equation in three dimensions both numerically and with a Thomas-Fermi model. The coherence is strongly affected by the space-dependent phase developed by the condensate when the trapping potential is turned off

    Metastable neon collisions: anisotropy and scattering length

    Get PDF
    In this paper we investigate the effective scattering length aa of spin-polarized Ne*. Due to its anisotropic electrostatic interaction, its scattering length is determined by five interaction potentials instead of one, even in the spin-polarized case, a unique property among the Bose condensed species and candidates. Because the interaction potentials of Ne* are not known accurately enough to predict the value of the scattering length, we investigate the behavior of aa as a function of the five phase integrals corresponding to the five interaction potentials. We find that the scattering length has five resonances instead of only one and cannot be described by a simple gas-kinetic approach or the DIS approximation. However, the probability for finding a positive or large value of the scattering length is not enhanced compared to the single potential case. The complex behavior of aa is studied by comparing a quantum mechanical five-channel numerical calculation to simpler two-channel models. We find that the induced dipole-dipole interaction is responsible for coupling between the different |\Omega> states, resulting in an inhomogeneous shift of the resonance positions and widths in the quantum mechanical calculation as compared to the DIS approach. The dependence of the resonance positions and widths on the input potentials turns out to be rather straightforward. The existence of two bosonic isotopes of Ne* enables us to choose the isotope with the most favorable scattering length for efficient evaporative cooling towards the Bose-Einstein Condensation transition, greatly enhancing the feasibility to reach this transition.Comment: 13pages, 8 eps figures, analytical model in section V has been remove

    Long-range diatomic s + p potentials of heavy rare gases

    Get PDF
    We examine the long-range part of the rare-gas diatomic potentials that connect to the R͕(nϪ1)p 5 ns͖ ϩR͕(nϪ1)p 5 np͖ atomic states in the separated atom limit ͑nϭ3, 4, 5, and 6 for Ne, Ar, Kr, and Xe, respectively͒. We obtain our potentials by diagonalization of a Hamiltonian matrix containing the atomic energies and the electric dipole-dipole interaction, with experimentally determined parameters ͑atomic energies, lifetimes, transition wavelengths, and branching ratios͒ as input. Our numerical studies focus on Ne and Kr in this paper, but apply in principle to all other rare gases lacking hyperfine structure. These diatomic potentials are essential for applications in which homonuclear rare-gas pairs interact at large internuclear separations, greater than about 20 Bohr radii. Among such applications are the study of cold atomic collisions and photoassociative spectroscopy
    corecore