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PHYSICAL REVIEW A 69, 012706 (2004
Metastable neon collisions: Anisotropy and scattering length

V. P. Mogendorfff E. J. D. Vredenbregt, B. J. Verhaar, and H. C. W. Beijerinck
Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
(Received 9 September 2003; revised manuscript received 24 October 2003; published 15 Janyiary 2004

In this paper we investigate the effective scattering leragti spin-polarized N&. Due to its anisotropic
electrostatic interaction, its scattering length is determined by five interaction potentials instead of one, even in
the spin-polarized case, a unique property among the Bose condensed species and candidates. Because the
interaction potentials of Nieare not known accurately enough to predict the value of the scattering length, we
investigate the behavior @f as a function of the five phase integrdlg, corresponding to the five interaction
potentials. We find that the scattering length has five resonances instead of only one and cannot be described
by a simple gas-kinetic approach or the degenerate internal(Btk8 approximation. However, the probabil-
ity for finding a positive or large value of the scattering length is not enhanced compared to the single-potential
case. We find that the induced dipole-dipole interaction enables strong coupling between the different
|[JQPM,) states, resulting in an inhomogeneous shift of the resonance positions and widths in the quantum-
mechanical calculation as compared to the DIS approach. The dependence of the resonance positions and
widths on the input potentials turns out to be rather straightforward. The existence of two bosonic isotopes of
Ne* enables us to choose the isotope with the most favorable scattering length for efficient evaporative cooling
towards the Bose-Einstein condensation transition, greatly enhancing the feasibility to reach this transition.

DOI: 10.1103/PhysRevA.69.012706 PACS nuntber34.50—s, 34.20.Cf, 03.65.Nk, 03.75.Nt

[. INTRODUCTION polarized gas and has a profound influence on the value of
the scattering length. Theoretical estimates of the rate con-
Bose-Einstein condensatidBEC) has been observed in stantgP°' for residual ionization of N predict a suppres-

cold dilute samples of ground-state alkali-metal atgins4]  sion of ionization by a factor in the range of 20000
and atomic hydrogefb,6]. In 2001, the first condensate of [11,16, depending on the details of the interaction potentials.
atoms in an electronically excited state was obtained fotn experiments in Hannover and Eindhoven, a lower limit on
metastable He1s)(2s)3S,] [7,8], referred to as He All the suppression of ionization by a factor of 10 has been con-
these systems have an electron configuration with @nly firmed, but so far no conclusive experimental data on the
electrons in their open shells in common, resulting in anresidual ionization rate of Nieare available.

isotropic electrostatic interaction. In addition, the anisotropy in the interaction results in
The other candidate for achieving BEC with atoms in andifferent interaction potential¥/, for the molecular states
electronically excited state is metastabld (&p)°(3s)°P,], |3,Q) of the colliding N& atoms, with() the absolute value

referred to as Nein this paper. Two groups are pursuing this of the projection of the total electronic angular momentum

goal: the group of Ertmer in Hannov¢®] and our group  j=j, +§, of the two colliding atoms on the internuclear

[10]. Metastable neon is unique among these species in thakis, For binary collisions of spin-polarized Newe have

Its blnary electrostatic interaction is anlSOtrOplC, due to |tSJ=4 andQ=0 through 4, depending on the relative orien-

(2p) * core hole[11]. o tation of the atoms during the collision. This is illustrated in
Crucial in reaching the BEC phase transition is a largerig. 1, which shows two colliding atoms in tf@=0 and

ratio of “good” to “bad” collisions, i.e., a large value of the () —4 state, respectively, with the electronic angular momen-

elastic collision rate characterized by the total cross sectiof,m j, , and the (D) ! orbital of the core hole indicated
o==8ma? for elastic collisions witha the swave scattering schematically.

length, and a small rate for inelastic collisions and other loss
processes. In addition, the creation of a stable BEC requires it
a positive value of the scattering length. For metastable rare Q=0
gas atoms, such as Hend Né&, the major loss process is . . OL) (2p)!
Penning ionization in binary collisions. Fortunately, the latter I J2
process is suppressed in a sample of spin-polarized atoms
[11]. For He", the suppression is very efficient: only spin - .
flips due to magnetic interactions result in some residual ion- @p)! @p)! J2
ization. Theoretical predictions and recent experimental data o)1
on residual ionization are in good agreemgi2—15. (2p)

For Ne*, the anisotropy in the electrostatic interaction g, 1. Schematic view of two colliding Ne|3P,) atoms in a
determines the magnitude of the residual ionization in a spingpin-polarized gasS=2J=4) for both theQ =0 and theQ =4

state. The orientation of the electronic angular momengygand

the (2p) ~* core hole of the individual atoms is indicated schemati-
*Email address: v.p.mogendorff@tue.nl cally.

Q=4
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plot for achieving BEC with N& shows the calculated num-

% ber of atoma\. with which quantum degeneracy is achieved
40 as a function of3P°' and the absolute value of the scattering
3.5 length|al. The calculation of this feasibility plot is based on
< a0 the kinetic model of Luiteret al. [17], including trap losses.
"’g 251 The criterion for crossing the BEC transition has been set to
G N.>1X 10° atoms. The initial conditions of the evaporative
‘l!-o 201 cooling process are taken equal to experimental values which
T 1.5 we are able to produce, i.eN=1.5x10°, T=1.2 mK, 7
g 10l =8 s, andyp=>5.5, with N the number of atoms] the tem-
051 perature,r the lifetime of the atom cloudy=E/(kgT) the
truncation parametei the energy, andkg the Boltzmann

50 100 125 150 constant.
|a] (units of a) From Fig. 2 it is clear that BEC of Neis feasible for
BP°'<25x10 ¥ cnPs ! (a suppression of 500) and,
FIG. 2. Feasibility plot for reaching the BEC transition with =75a,, with a, the Bohr radius. Therefore, we calculate the
?Ne* in the Eindhoven experiment, showing the number of atomsprobability P, that either of the bosonic isotopes of Nbas
N, with which qlfantum Qegenergcy is achieved as a function of the, total cross section larger than= 87ra§= (1.4x10°) ag A
rate consta.nB"O for residual |on|zat|0r.1 and the absolute value of larger suppression of ionization of course allows for a
thg)lscatterl_ng lengthal. The broken lines correspond ® and  gmajier value of the scattering length and vice versa.
Bc" for which BEC of N¢ becomes feasible. As a first-order estimate, in a simple gas-kinetic picture,
one might expect the effective elastic total cross sectipn
Because the scattering length is determined by the phaseferred to as elastic cross section in the remainder of this
integral of the interaction potential, these different potentialpaper, to be a weighted average over the elastic cross sec-
V for Ne* correspond to different scattering lengthg . tions o, =8aj of the different molecular states. Applying
Since there is no preference for a certain relative orientatiothis approach to the anisotropic Neroblem results in a
of the atomg(or () state during the collision, even for spin- large enhancement of the probability of encountering large
polarized N&, the elastic collision cross section will be de- values of o as compared to all systems with an isotropic
termined by an effective overall scattering lengthincorpo- interaction potential. Moreover, the elastic cross section is
rating the behavior of all fivé) states involved. Among the always larger than a rather large lower limit.
species where Bose-Einstein condensation has been A more sophisticated approach can be found in the degen-
achieved, the BEC candidate Néhus has a unique property. erate internal statéDIS) method[23]. In this method, the
In this paper we investigate the relation between the efenergy splitting of the internal states is neglected arid
fective overall scattering lengthand the phase integrads, given by the weighted average of the contributing scattering
of the potentialsV,. Although the potentials of Neare lengthsa, . For cold collisions of hydrogen atoms, the DIS
unknown at the level of accuracy needed to predict the valuenethod results in values for the scattering length that com-
of the scattering length, it is useful to investigate the behavpare well to the outcome of full quantum calculations
ior of the effective scattering length as a function of the[18,19.
average value of the phase integral. In the following, we will  The definitive approach to determine the scattering length
refer to the effective overall scattering length simply as scata of Ne*, of course, is a full five-channel quantum-
tering length. mechanical calculation. Although this numerical approach
A better understanding of the complex scattering length otupplies the correct answer to our problem, it has the disad-
Ne* is crucial in determining the feasibility of achieving vantage that the results are not always easy to understand in
BEC with Ne&'. Important questions that need to be an-terms of the properties of the input potentials. We use the
swered to determine the feasibility for achieving BEC are theesults of the numerical calculation to check the validity of
following. the different analytical approximations described above,
(1) Is there a larger probability of encountering positive which in general give more insight.
values of the scattering length, as compared to the 75% prob- This paper is organized as follows. First, the availaie
ability for the single-potential case? initio potentials and the calculation of the different phase
(2) What is the probability for finding a sufficiently large integrals®, are discussed in Sec. Il. In Sec. Ill the single-
elastic total cross section for efficient evaporative cooling? potential scattering lengtkSec. 1l A), the gas-kinetic ap-
(3) How does the availability of two bosonic isotopes of proach to defining an elastic cross sectiofSec. Il B), and
Ne*, Ne* and ??Ne* (with a natural abundance of 90% the scattering length obtained with the DIS approximation
and 10%, respectivelyinfluence these chances? (Sec. Il O are discussed. We then present the results of our
The values of the rate constant for residual ionizafs8f' quantum-mechanical, numerical scattering calculation in
and the scattering length which we need to achieve BEC Sec. IV. To end we present our conclusions in Sec. V. All
with Ne* for typical experimental conditions in our experi- calculations are performed for both bosonic isotopes &f,Ne
ment, are summarized in Fig. 2. This so-called feasibility?°Ne*, and 22Ne* .
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II. INTERACTION POTENTIALS TABLE |I. Classical phase integrab, and its difference

. . . Adg =Dy — Py with respect to th&) =0 potential of the spin-
There are five adiabatic molecular stafgd)) that con-  jarized adiabatic molecula® states, connecting to the Ne

nect to the spin-polarized Ne-Ne* asymptotic limit with | Ne* asymptotic limit withJ=4 and S=2. The Q states are
total electronic angular momenturd=4 and total spin |abeled by(),, where the gerade labglreflects the symmetry of
S=2. The degeneracy of th@=0 state is 1, that of all the electron wave function under inversion around the center of
others is equal to 2. As input potentials for\&e have used charge. Data are given for both bosonic isotop®¢e* and ’Ne*

the short-rangeab initio potentials of Kotochigoveet al.  of Ne*.

[20,21], which are available in the rangB<R;, with

R;=60a, for Q=4 andR;=120a, for all other potentials. 2ONe* 2Ne*
Typical values of the well deptle and its positionR,, are D, Adg D Adg,
€~30 meV andR,,~10a,. The long-range behavior of the ( rad (m rad (m rad (m rad

potential curves is dominated by the attractive induced

dipole-dipole interaction- C4/R®. The ab initio potentials ¢ 16.43 —054 17.23 —0.77
e . . - . 16.86 —-0.11 17.68 —0.34
have within=3% identicalCg coefficients, since the long- 29 16.12 0.85 16.91 109
range interaction is dominated by tli@s) valence electron 9 ' ’ : '
[11,16. We use a singleCgq coefficient with a value of 9 16.36 —0.61 17.16 —0.84
Ce=1938 a.u. as calculated by Derevianko and Dalgarnts)g 16.97 0 18.00 0
[16], based on the static polarizability of neon.
We characterize the potenti by their classical phase
integral P W by P bo=Pat ¢, @
Ry " with ¢ [0,7].
@Q:f kQ(R)dR+J kQ(R)dR:q>§<Rs+ POR>Rs, For simplicity, we assume for now that the phase differ-
Re Rs ences between th@ potentialsAd(, o, are constant and

(1) equal to theab initio values given in Table I. Later on in Sec.

_ o IV, we will also varyA®, o, over an intervahr to investi-
with ko (R) the local wave number arig, the classical inner gate the influence ok, o, on the scattering lengta.

turning point for zero collision energy. We chooBe such The classical phase integrals of the two bosonic isotopes
that for R<Rs the energy splittingAVq o/(R)=Va(R)  of Ne* are related by the mass-scaling rule
-V (R) between the) potentials dominates over the ro-

tational coupling ¢ = (221201220, . ©)

AV, o(R)=—[#2/(2uR?) 180 -qa/|-1 Using the average phase integral over @llstates(®)

- - =16.57, we find an isotope shift equal to 0.81 This
XNIP(P+1)-00'TVI(I+1)-00'], simple relation between the phase integrals®#fie* and

. ) 22Ne* enables us to compare very easily the results obtained
with u the reduced maskthe rotational angular momentum, for 20Ne* with those for 22Ne*

and P=J+1 the total angular momentum. F&>R, the

opposite holds. _ IIl. ANALYTICAL APPROACH
The first partd, " of the phase integral has been calcu-

lated by numerical integration in the interyi, ,Rs], with A. Single-potential scattering length

R;=20a,. The contribution folR>R, to the phase integral The semiclassical analysis of the scattering length in
is calculated analytically assuming a pure long-rangeatomic collisions by Gribakin and Flambadu22] yields for

() states have very different values &, varying by as

nance in the scattering length occurs when a quasibound

—Cg/R®, behavior, resulting inbR~Rs=3.34q, the swave scattering length of a potential with a long-range
much asA®g o/ =Pg—Py,=0.87. This implies both a
state lies close to the dissociation limit or has just moved intavith I'( ) the Gamma function anal,, the background value

dn = apg

The numerical results are given in Table | for both behavior,— C4/RS,
a
1—tal ¢“_§ s
different number of bound states and different positions of

bosonic isotopes’®Ne* and 2?Ne* . We see that the different
the resonances iag . Asymptotic behavior of, or a reso- abg:00177/4)[‘/2#C6/4ﬁ]1/2[]—‘(3/4)/F(5/4)], (4)

the continuum. of the scattering length. The latter is fully determined by the
Because the interaction potentials of neon are not knowfong-range behavior of the potential and is equalajg
accurately enough to prediet we have to varyb, over a =44.33,. The position of the resonance &, is equal to

range equal tar to predict the range of values that we can reSmodmr= m/2+ w/8=5/8. We define the widtl,, of a
expect for the spin-polarized Nesystem. Therefore, we in- resonance im,, as

troduce a scanning parametgrthat we add teb(, to create
a modified phase integrat, according to o= ¢a(3a,g) — da(—apg), (5)

012706-3
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251+

TABLE II. Minimum value o, of the elastic cross section and
- probability P, for o=o¢.=(1.4x10°a2 for a single isotope
" 201 (®*Ne*) and the set of two bosonic isotopé®Ne* and 22Ne*, as
o calculated with the single-potential semiclassical model, the gas-
= 15 kinetic model, the DIS model, and the quantum-mechanical numeri-
(54 cal calculation.
ﬂ
' 10+ ) . . .
3 Single isotope Either isotope
© 54 Omin Pc T min Pc
Model (units of 1Ga3) (%) (units of 1Ga2) (%)
000 Single potential 0 42 0.16 61
’ di Gas kinetic 0.7 78 1.3 99
¢ (n radians) DIS 0 72 0.35 95
FIG. 3. Elastic cross section=(8a3) in a gas-kinetic ap- Numerical 0 42 0.17 67

proach for?®Ne* (solid line) and ??Ne* (broken ling, as a function
of the phase integrap < [0,77]. We observe five resonances due to ) ) )
the five contributing potentials, which also results in a minimumt0 the elastic cross section 8fNe* by the isotope shift of
value o,i,>0 for o. 0.81w. Depending on the actual phase integea) of the
20Ne* system, it can thus be advantageous to switch to the

around the resonance positia{eS. The scattering length less abundant bosonic isotop&Ne*, to optimize the value
varies arounda,, with a probability of 75% of being posi- of the elastic cross section. Choosing for each valué tie
tive. The probability that at least one of the bosonic isotopedSOtope with the largess yields an even larger minimum
of Ne* is positive is much larger, 94%. value of o, as can be seen in Table Il. In additid, in-
creases from 78% in the single-isotope case to 99% for ei-
o ther isotope.
B. Gas-kinetic model

In a simple gas-kinetic approach, we define the elastic C. DIS model
cross section as a weighted average of the elastic cross sec-
tions o,

J
0'=<87Ta6>=0'bg QE:O w5

)

modsr. (8)

Next, we investigate the scattering length in the DIS ap-
proximation, which has proven to be quite insightful for hy-
w12 drogen[18,19. In this approach, the energy splitting of the
1—tar( ¢Q—§” . (6) internal states is neglected. For Nethis means that the
rotational splittingAV,,; between the partial waves is ne-
glected. In the DIS approximation, the scattering length is

Hereopg=81ap,= (0.5x 10°)aj is the background value of given by a weighted average of the fiag’s involved [19]

the elastic cross section amdg, is the amplitude of the pro- .

jection of the initial asymptotic rotational state on tfe T

basis, withw,=1/3 andwq-,=+2/3. We assume that we a=<ag)=angE:O Wao 1—tar< Iy

are in the low-temperature limit where the conditiva<<1

holds, withk= y2uE/% the asymptotic wave number aBd  From Eq.(7) it is clear that the resonance positiong® of a

the collision energy in the reduced system. in the DIS approximation, coincide with the single-potential
In Fig. 3 we show the results for the elastic cross sectioesonance positions. They are completely determined by the

of 2Ne* (solid line) and #Ne* (broken ling as a function  values ofA®, o,

of ¢ €[0,7] [EQ. (2)]. Two important characteristics in the '

elastic cross section of Nemmediately catch the eye. First, res

we see a rather large minimum valus,;, for the elastic (O §7T_A(DQ,0

cross section and an increase of almost a factor of 2 in the

probability P, that the elastic cross section is large enough to  Figure 4 shows the scattering lengtlas a function of the

make BEC of N& feasible as compared to the single- scanning parametep <[0,7]. Again we observe five reso-

potential case, as can be seen in Table II. nances in the scattering length. In this figure we have also
Second, we see five resonancessinattributable to the plotted the behavior of the single-potential scattering length

five different() states of N&. This characteristic behavior aq_, (broken ling, showing clearly that the single-potential

does not depend very much on the specific valueA®f, ,  resonance positions coincide with the resonance positions of

as long as they are not very smai 0.057). This behavior a in the DIS approach.

is very different from the single-potential case, where we can Taking the weighted average af, does not change the

encounter an elastic cross section equal to zero and thetetal probability for a positive scattering length (75%) as

exists only one resonance. compared to the single-potential caSec. Il A). However,
The general picture is the same for both isotopes. Howthe probability of encountering a large value afoes in-

ever, the elastic cross section@Ne* is shifted with respect crease, as can be seen in Table Il. Both the width of the

012706-4
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AVg o/(R) between the interaction potentialg, is larger

\ than the differential rotational couplingV,.(R). As a re-

N sult, there is no coupling between differdntstates but cou-
pling between different states. In this regiotf) is a good
quantum number and tHeQAPMp) basis is the proper rep-
resentation. Herd/ is the projection o on the quantiza-

T tion axis. BothP andMp are conserved during the collision.
In a semiclassical picture we can describe this regime in the
following way. The large()-splitting results in a rapid pre-
0.0 02 04 06 08 1.0 cession of] about the internuclear axis, much faster than the

¢ (n radians) rotation of the axis itself as determined by the valud iof

FIG. 4. DIS result for the scattering lengéh(solid line) as a The projection ofJ on the internuclear axis is thus con-

function of the parametes < [0,7], showing five resonances that Served, while the magnitude dfchanges due to the chang-

are labeled with af) value because they are located at the positioning orientation ofJ with respect to the space-fixed total
of the single-potential resonancesap . For comparison we show angular-momentum vectds.

the behavior ofa, (broken ling. . . . A .
& behavior ot (broken ling At large internuclear separatiofi®gion Il in Fig. 5, i.e.,
R>Rg, the rotational coupling dominates the interaction: the

. . . . o litting AV o/ (R) i ller th he diff ial i |
spect tog determine this probability. From Fig. 4 it is clear ig:lttll?r? v Q(*%)( T)h'z fg;i\?; tng;neo(fjItheerizﬂsji;()ti{tlggi
that the total widthI" of all five resonances combined is PINGVror ). 9

much larger than the single-potential resonance width. Théesults in a rotation of the internuclear axis with respect to
width of each resonance is not only determined by the rela@nd therefore a change in the value @f (Fig. 1). In this
tive weightw,, of its single-potential scattering length but region{ is not a good quantum number Hus, and we use
also by its relative positionp[s with respect to the other the[JIPMp) representation.

resonances, and therefore depends sensitively on the phaseUltracold collisions between spin-polarized Netoms
differencesA®, o, between the potentials. An increased are described by a five-channel problem: fiee= 0, . . . 4
width and derivative ofa in the DIS approach as compared channels in region | and file=0,2, . . . ,8channels in region
to the single-potential case therefore lead to a much l&ger 1. Only even partial waves contribute due to the symmetry
(Table 1l). Choosing the most advantageous bosonic isotopeequirement of the wave function for bosons. The rotational
improves againo,,;, and P, as well as the probability for energy barrie(5.6 mK forl=2, located at 78) is always
encountering a positive value af(95%) as compared to the much larger than the collision energy0.5 mK). For this

Q=1 clear separationgregion I, i.e., R<Rg, the splitting
ll

a (units of a)

resonance$Eg. (5)] and the derivativeda/ d¢ of a with re-

single-isotope cas€Table ). reason, higher-order partial wavelsA0) do not contribute
to the incoming channel. However, in region I, the short-
IV. QUANTUM-MECHANICAL NUMERICAL range interactiom\Vy, o still couples the single incoming
CALCULATION channel|J=4 1=0 P=4 Mp=4) to higher-order partial
waves. Because the tunneling probability fe¥r0 is negli-
A. Model gible (=10%), they only contribute to the elastic scattering

For the Né& system, we can distinguish two regions of process when they again couple to the=4 1=0 P=4
interest in the potential¥,(R) (Fig. 5. At small internu- Mp=4) initial state.
In our calculations we assume that the intermediate re-

10— —t gion, whereV,(R) andVy, o.(R) are of the same order of
] magnitude, is arbitrarily small, i.e., we assume a sudden tran-
04 5 sition from region | to region Il aR=R. The scattering
R R R ] problem now reduces to potential scattering and we can
S -10- ¢ : ° ] solve the uncoupled problem in region | in th#)PMp)
E basis and in region Il in the)IPMp) basis, for each channel.
=2 -20- ] After transformation of the solution,(R) in region | atR
1 =R from the |[JQAPMp) basis to thelJIPMp) basis, we
-30- I I ] connect it continuously to the long-range solutioi(R) at
T pos Rs, assuming equal local wave numbges].

In very good approximatiofi24,25, we can summarize
the behavior of the atoms in region | by means of the accu-
mulated phase method. R= Ry the radial wave function of
a single uncoupled channel is then given by

R (units of a))

FIG. 5. Interaction potentid¥, for the ) =0 molecular state of
two colliding spin-polarized Ne atoms, with both range (domi-
nant Q) splitting) for R<R,=20a, and range ll(dominant rota-
tional energy splitting for Re<<R<R,= 2008, indicated.

R<R

U (Re) =Sin(® ™ 5+ p+ m/4), 9

012706-5
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shows the scattering lengéh(solid line) as a function ofe.
For comparison, we have included the result doobtained
with the DIS model(broken ling (Sec. Il O, in which the
positions of the resonances & correspond to the single-
potential resonance positionsar, . The resonance positions
o " of a are shifted in an inhomogeneous way with respect
to those obtained with the DIS method and also the widths
I' of the individual resonances differ significantly. We can
no longer attach afl label to each of the resonances, as is
possible in the DIS approach. In the DIS model, we neglect
04 06 08 10 the rotational splitting/,,; between the partial waves, so that
¢ (m radians) effectively all partial waves are equivalent. Apparently, both
the resonance positions as well as the widths of the indi-

FIG. 6. Full guantum-mechanical calculation of the scatteringvidual resonances in the numerical results #oare influ-
lengtha (solid ling) as a function of € [0,7]. For comparison we  enced by the coupling to higher-order partial waves. This is
also have depicted the scattering Iengtlmbtained with the DIS not Surprising: close |y|ng bound states from Otﬁbpoten_
model(broken ling. Both position and width of the resonancesain  tjgls will most likely shift the bound state and thus the cor-
differ from the DIS result: ar) label cannot be attached to any responding resonance position. Clearly, neglecting the rota-
separate resonance. tional splitting of the internal states is not justified in the case
of Ne*.

However, despite these qualitative differences in the be-
Havior of a, the quantitative behavior is the same as in the
single-potential case. The probabilities for encountering a
positivea value and an elastic cross sectiop are equal to

I _ 0 those found in the single-potential cad@able 1I). Although
(R =Tiol (Ro), (10 the total width of the ?esgnances is larger, this is cogmpen—
with T, the elements of the transformation matiixbe- ~ Sated by a decrease in the derivativeaoMoreover, choos-
tween thel JOPMp) and the|JIPMp) basis. - ing the most advantageous bosonic isotope for each value of
In region II, the evolution of the radial wave functitm‘,\ the scanning parameter leads to a similar increase in these

for R>R, is governed by the radial Schtinger equation values for both the full quantum-mechanical calculation as
s the single-potential case.

92 | I(1+1) 2uCq To investigate the influence &d(, . on the positions
—Un(R)+ k?— > T Toe ul(R)=0. (11)  of the resonances in, we have varied the classical phase
IR R A°R differenceA® 4 , of one of theQ) potentials (1 =4), while
keeping the other classical phase differences fixed at dfeir
initio value (Table ). Starting at itsab initio value, the clas-
sical phase difference

a (units of a)

with the extra phase shift/4 due to our choice of using the
classical phase rather than the quantum-mechanical accum
lated phase. After transformation to th#PMp) basis the
5X5 solution matrix is given by

The connection of the shoft)} and long-rangé€ll) solutions
in the |JIPMp) representation aR=R determines the
boundary conditions for the numerical integratiorugffrom
Rs to R, , where the asymptotic limit of a vanishing potential A=A, ot Ao, (14)
is valid. At R,, the numerical solution is connected to the
asymptotic radial wave function
with A¢ e[0,7], is varied overA ¢, e[ —0.54m,0.46m].
| 1 _ , In this way, the bound states in tfle=4 potential encounter
Uy (Ra)= W[A@_'(ma_'”/z“ Bie'Ra"1"2)], (12 the bound states in all oth€r potentials. The position of the

resonancesy, ° for this modified set ob initio potentials is

to determine the scattering mat$e BA 1. From the scat- determined in the usual way, by scanning the paramgter

tering matrix we then obtain the scattering length the phase integrap,, [Eq. (2)] over the rang¢0,7].
The results are shown in Fig. 7, where we have plotted the
- taIn(Syp)/2i] position ¢5° of the five resonances imas a function of the
:_Ii”:) Kk : (13 shift A¢ in the bound states of th&=4 potential. The

broken lines are drawn to guide the eye. We observe that two
of the resonances remain at a fixed position, while all three
B. Results others shift proportional toA¢ with a slope equal to
Using theab initio potentials of Sec. Il we have calcu- (—0.34£0.02)7 and separated by (0.3(.02)r. Narrow
lated the scattering length ofNe* using the quantum- avoided crossings occur when “constan$® meet ¢°
mechanical calculation described in Sec. IV A. Again, wevarying like «x—A¢ at A¢=(0.46+n)7 and A¢$=(0.52

have performed these calculations f¢r=[0,7], to deter- +n)m, withn=0,1,2... . Inaddition, very broad avoided
mine the range of scattering length and elastic cross sectiogrossings occur betweet;° varying like «x—A¢ at A¢g
values that we can expect for the Neystem. Figure 6 ~(0.1+n)m, with n=0,1,2... . We have plotted ¢;;°
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squarep at which a resonance ia occurs for a modified set of
potentials, with the phase integral differenke, o varying from its
ab initio value — 0.54+ to + 1.57 by varyingA ¢ over 27. In this
way, the bound levels of th€l=4 state “encounter” the boun
levels in all other) states. The broken lines are drawn to guide the
eye.

FIG. 8. Numerical two-channelJE 1) calculation of position
(@ and (b) and width (c) and (d) of the resonances ia for a
d modified set of potentials, withh ¢, o varying from itsab initio
value —0.617 to +1.397 by varyingA ¢ over 27r. The figures on
the right-hand sidéb) and (d) show the results for a reducety
=Cg4/100. The broken lines are drawn to guide the eye and the
over a rangeA ¢ €[0,277], to show the avoided crossings. arrows indicate the avoided crossings. In the presence of an induced
Varying one of the other classical phase differentes,.,, dipole-dipole interactioria) the resonance positions vary both pro-
yields similar results. ' portional to A¢ and are strongly coupled, and the width of the
Clearly, the quasibound states of the system are no |ongé?sonanceéc) varies as a sine_._For a smgll dipole-dipole i_nteraction
pure |JQPMP) states. Apparently, the quasibound states(b) one of the resonance positions remains constant, while the other

L E§e3 : varies proportional ta ¢. The width of the resonancéd) remains
whose resonance positio vary proportional toA ¢ are constant, except at the avoided crossing where they coirleide
strongly coupled to theJQ=4PM;) state and those whose row)

o° remain constant are only very weakly coupled to the

|JQ=4PMp) state. When two strongly coupled resonancesgtational energy barrier increases both in height and width.
approach each other, astrong,.broad av0|_ded Crossing OCCUIgs 4 result, the region arourid, in which rotational cou-
Similarly, a weak, narrow avoided crossing occurs when Bling between the differenf) states takes place decreases
weakly coupled resonance approaches one of the other resgsq eventually vanishes. FiguresbBand 8d) show the
hances. . _ _ _ _ _ resonance positions and widths for a vanishing valu€of
This picture is consistent with the behavior of the width Ofsimulated by assuming a modified val@§=Ce/100. One
thﬁ reson:lzmclfs tas a fur|1ct|on qub:[ This bec?rrt\}\(/as (;]Iear Iresonance position remains constant, while the other varies
when we ook at a simpier, more transparent two-c anneproportional toA¢ and the widths of the resonances are
.e.,J=1, numerical calculation of the scattering length. Theqa ang remain constant except at the avoided crossing
results of this calculation are consistent with the full five- where they approach each (;ther This is the behavior seen for
channel calculation. In Fig.(8 we have plotted the phase some of the resonancesarfor J=4 and is qualitatively the

H res H I 1
integralséq ~ at which a resonance moccurs as a function  game as the behavior of the resonance positions and widths

of A¢ for J=1. Both resonance positions vary proportional;, ihe DIS model, where coupling between the quasibound
to A¢ with a slope equal to £0.50+0.02)7, and with  giates is not taken into account.
broad avoided crossing between themAap=(0.1+n),

with n=0,1, ... .They are strongly coupled, which is also
reflected in the behavior of the width of the resonankgs V: CONCLUDING REMARKS
[Fig. 8(c)], which varies as a sinébroken ling between 0 Elastic collisions between spin-polarized *Natoms are

andI’. At the avoided crossings the widths of the resonancegoverned by multiple interaction potentials. This unique
become equal. The total width of both resonances combinegroperty of Né among the BEC species and candidates is a
I'=I'y+TI'; is conserved, but one resonance is wide whileresult of the anisotropic interaction between them. Both
the other is narrow. This periodic change in the resonanceimple analytical and full quantum-mechanical calculations
width is due to the periodic change in the coupling of bothof the scattering lengtla of Ne* show that the resulting
quasibound states to the incoming 0 channel with chang- scattering length has five resonances. A simple gas-kinetic
ing ¢¢°. picture yields very favorable but unrealistic results for the
The weakly coupled case can be illustrated by reducinglastic collision cross section that are not compatible with the
the value ofCg, because in the absence of an induced dipolenumerical calculations. This approach is only valid for an
dipole interaction— C¢/R® no coupling between the quasi- incoherent mixture of) states. Comparison between the nu-
bound states is possible. This can be understood in the fofnerical results and the DIS model reveals thas also not
lowing way. With a decreasing dipole-dipole interaction thesimply a weighted average over the single-potential reso-

012706-7



MOGENDORFFet al. PHYSICAL REVIEW A 69, 012706 (2004

nancesa,, and that the resonancesarcannot be assigned to Positions vary= —A ¢) is determined by the coupling to the

a singleQ) state. Although the DIS approach assumes a colg0ing channel, which varies periodically with¢. The

herent mixture of) states, coupling between the quasiboundWidth of the weakly coupled resonanadgghose positions do

states is not taken into account, and it therefore does ndtot vary with A¢) is constant, since the coupling to the

describe the Ne system accurately. The overall behavior of INgoing channell .does.not change. The total change in all five

a is similar to that of the usual single-potential scattering’Sonance positions is always equal-ta\ ¢ and the total

length: neither the probability for encountering a positive norWidth is conserved. o

a large value ofiis enhanced by the presence of five instead The possibility to choose between the two bosonic iso-

of one resonances. topes of Né& to optimize the value of the elastic cross sec-
The presence of an induced dipole-dipole interactiorfion, greatly enhances the prospects for achieving BEC with

leads to strong coupling between the differéhistates and N€* (Table Il). Large beam fluxes of both bosonic isotopes,

causes a broadening of the resonances, resulting in quagtuual in obtaining favorable initial conditions for efficient

bound states that are a linear combination of differenvaporative cooling, have been realized at the Eindhoven

|JOPMp) states. This coupling between the different experiment[26], therefore choos_lng thg isotope with the

|JQPMp) states in turn leads to the inhomogeneous shift ofost favorable scattering length is feasible.

the resonance positions and widths in the quantum-

mechanical calculation as compared to the DIS qpproach. ACKNOWLEDGMENTS
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