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Metastable neon collisions: Anisotropy and scattering length

V. P. Mogendorff,* E. J. D. Vredenbregt, B. J. Verhaar, and H. C. W. Beijerinck
Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

~Received 9 September 2003; revised manuscript received 24 October 2003; published 15 January 2004!

In this paper we investigate the effective scattering lengtha of spin-polarized Ne* . Due to its anisotropic
electrostatic interaction, its scattering length is determined by five interaction potentials instead of one, even in
the spin-polarized case, a unique property among the Bose condensed species and candidates. Because the
interaction potentials of Ne* are not known accurately enough to predict the value of the scattering length, we
investigate the behavior ofa as a function of the five phase integralsFV corresponding to the five interaction
potentials. We find that the scattering length has five resonances instead of only one and cannot be described
by a simple gas-kinetic approach or the degenerate internal state~DIS! approximation. However, the probabil-
ity for finding a positive or large value of the scattering length is not enhanced compared to the single-potential
case. We find that the induced dipole-dipole interaction enables strong coupling between the different
uJVPMP& states, resulting in an inhomogeneous shift of the resonance positions and widths in the quantum-
mechanical calculation as compared to the DIS approach. The dependence of the resonance positions and
widths on the input potentials turns out to be rather straightforward. The existence of two bosonic isotopes of
Ne* enables us to choose the isotope with the most favorable scattering length for efficient evaporative cooling
towards the Bose-Einstein condensation transition, greatly enhancing the feasibility to reach this transition.

DOI: 10.1103/PhysRevA.69.012706 PACS number~s!: 34.50.2s, 34.20.Cf, 03.65.Nk, 03.75.Nt
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I. INTRODUCTION

Bose-Einstein condensation~BEC! has been observed i
cold dilute samples of ground-state alkali-metal atoms@1–4#
and atomic hydrogen@5,6#. In 2001, the first condensate o
atoms in an electronically excited state was obtained
metastable He@(1s)(2s)3S1# @7,8#, referred to as He* . All
these systems have an electron configuration with ons
electrons in their open shells in common, resulting in
isotropic electrostatic interaction.

The other candidate for achieving BEC with atoms in
electronically excited state is metastable Ne@(2p)5(3s)3P2#,
referred to as Ne* in this paper. Two groups are pursuing th
goal: the group of Ertmer in Hannover@9# and our group
@10#. Metastable neon is unique among these species in
its binary electrostatic interaction is anisotropic, due to
(2p)21 core hole@11#.

Crucial in reaching the BEC phase transition is a la
ratio of ‘‘good’’ to ‘‘bad’’ collisions, i.e., a large value of the
elastic collision rate characterized by the total cross sec
s58pa2 for elastic collisions witha the s-wave scattering
length, and a small rate for inelastic collisions and other l
processes. In addition, the creation of a stable BEC requ
a positive value of the scattering length. For metastable
gas atoms, such as He* and Ne* , the major loss process i
Penning ionization in binary collisions. Fortunately, the lat
process is suppressed in a sample of spin-polarized a
@11#. For He* , the suppression is very efficient: only sp
flips due to magnetic interactions result in some residual i
ization. Theoretical predictions and recent experimental d
on residual ionization are in good agreement@12–15#.

For Ne* , the anisotropy in the electrostatic interactio
determines the magnitude of the residual ionization in a s
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polarized gas and has a profound influence on the valu
the scattering length. Theoretical estimates of the rate c
stantbpol for residual ionization of Ne* predict a suppres-
sion of ionization by a factor in the range of 1021000
@11,16#, depending on the details of the interaction potentia
In experiments in Hannover and Eindhoven, a lower limit
the suppression of ionization by a factor of 10 has been c
firmed, but so far no conclusive experimental data on
residual ionization rate of Ne* are available.

In addition, the anisotropy in the interaction results
different interaction potentialsVV for the molecular states
uJ,V& of the colliding Ne* atoms, withV the absolute value
of the projection of the total electronic angular momentu
JW5 jW11 jW2 of the two colliding atoms on the internuclea
axis. For binary collisions of spin-polarized Ne* , we have
J54 andV50 through 4, depending on the relative orie
tation of the atoms during the collision. This is illustrated
Fig. 1, which shows two colliding atoms in theV50 and
V54 state, respectively, with the electronic angular mom
tum j 1,2 and the (2p)21 orbital of the core hole indicated
schematically.

FIG. 1. Schematic view of two colliding Ne* u3P2& atoms in a
spin-polarized gas (S52,J54) for both theV50 and theV54
state. The orientation of the electronic angular momentumj 1,2 and
the (2p)21 core hole of the individual atoms is indicated schema
cally.
©2004 The American Physical Society06-1
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MOGENDORFFet al. PHYSICAL REVIEW A 69, 012706 ~2004!
Because the scattering length is determined by the ph
integral of the interaction potential, these different potenti
VV for Ne* correspond to different scattering lengthsaV .
Since there is no preference for a certain relative orienta
of the atoms~or V state! during the collision, even for spin
polarized Ne* , the elastic collision cross section will be d
termined by an effective overall scattering lengtha, incorpo-
rating the behavior of all fiveV states involved. Among the
species where Bose-Einstein condensation has b
achieved, the BEC candidate Ne* thus has a unique property

In this paper we investigate the relation between the
fective overall scattering lengtha and the phase integralsFV

of the potentialsVV . Although the potentials of Ne* are
unknown at the level of accuracy needed to predict the va
of the scattering length, it is useful to investigate the beh
ior of the effective scattering length as a function of t
average value of the phase integral. In the following, we w
refer to the effective overall scattering length simply as sc
tering length.

A better understanding of the complex scattering length
Ne* is crucial in determining the feasibility of achievin
BEC with Ne* . Important questions that need to be a
swered to determine the feasibility for achieving BEC are
following.

~1! Is there a larger probability of encountering positi
values of the scattering length, as compared to the 75% p
ability for the single-potential case?

~2! What is the probability for finding a sufficiently larg
elastic total cross section for efficient evaporative cooling

~3! How does the availability of two bosonic isotopes
Ne* , 20Ne* and 22Ne* ~with a natural abundance of 90%
and 10%, respectively! influence these chances?

The values of the rate constant for residual ionizationbpol

and the scattering lengtha which we need to achieve BEC
with Ne* for typical experimental conditions in our exper
ment, are summarized in Fig. 2. This so-called feasibi

FIG. 2. Feasibility plot for reaching the BEC transition wi
20Ne* in the Eindhoven experiment, showing the number of ato
Nc with which quantum degeneracy is achieved as a function of
rate constantbpol for residual ionization and the absolute value
the scattering lengthuau. The broken lines correspond toac and
bc

pol for which BEC of Ne* becomes feasible.
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plot for achieving BEC with Ne* shows the calculated num
ber of atomsNc with which quantum degeneracy is achiev
as a function ofbpol and the absolute value of the scatteri
lengthuau. The calculation of this feasibility plot is based o
the kinetic model of Luitenet al. @17#, including trap losses
The criterion for crossing the BEC transition has been se
Nc.13105 atoms. The initial conditions of the evaporativ
cooling process are taken equal to experimental values w
we are able to produce, i.e.,N51.53109, T51.2 mK, t
58 s, andh55.5, with N the number of atoms,T the tem-
perature,t the lifetime of the atom cloud,h5E/(kBT) the
truncation parameter,E the energy, andkB the Boltzmann
constant.

From Fig. 2 it is clear that BEC of Ne* is feasible for
bc

pol<2.5310213 cm3 s21 ~a suppression of 500) andac

>75a0, with a0 the Bohr radius. Therefore, we calculate t
probability Pc that either of the bosonic isotopes of Ne* has
a total cross section larger thansc58pac

25(1.43105)a0
2 . A

larger suppression of ionization of course allows for
smaller value of the scattering length and vice versa.

As a first-order estimate, in a simple gas-kinetic pictu
one might expect the effective elastic total cross sections,
referred to as elastic cross section in the remainder of
paper, to be a weighted average over the elastic cross
tions sV58paV

2 of the different molecular states. Applyin
this approach to the anisotropic Ne* problem results in a
large enhancement of the probability of encountering la
values ofs as compared to all systems with an isotrop
interaction potential. Moreover, the elastic cross section
always larger than a rather large lower limit.

A more sophisticated approach can be found in the deg
erate internal state~DIS! method@23#. In this method, the
energy splitting of the internal states is neglected anda is
given by the weighted average of the contributing scatter
lengthsaV . For cold collisions of hydrogen atoms, the DI
method results in values for the scattering length that co
pare well to the outcome of full quantum calculatio
@18,19#.

The definitive approach to determine the scattering len
a of Ne* , of course, is a full five-channel quantum
mechanical calculation. Although this numerical approa
supplies the correct answer to our problem, it has the dis
vantage that the results are not always easy to understan
terms of the properties of the input potentials. We use
results of the numerical calculation to check the validity
the different analytical approximations described abo
which in general give more insight.

This paper is organized as follows. First, the availableab
initio potentials and the calculation of the different pha
integralsFV are discussed in Sec. II. In Sec. III the singl
potential scattering length~Sec. III A!, the gas-kinetic ap-
proach to defining an elastic cross sections ~Sec. III B!, and
the scattering length obtained with the DIS approximat
~Sec. III C! are discussed. We then present the results of
quantum-mechanical, numerical scattering calculation
Sec. IV. To end we present our conclusions in Sec. V.
calculations are performed for both bosonic isotopes of N* ,
20Ne* , and 22Ne* .
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METASTABLE NEON COLLISIONS: ANISOTROPY AND . . . PHYSICAL REVIEW A69, 012706 ~2004!
II. INTERACTION POTENTIALS

There are five adiabatic molecular statesuJ,V& that con-
nect to the spin-polarized Ne* 1Ne* asymptotic limit with
total electronic angular momentumJ54 and total spin
S52. The degeneracy of theV50 state is 1, that of all
others is equal to 2. As input potentials for Ne* we have used
the short-rangeab initio potentials of Kotochigovaet al.
@20,21#, which are available in the rangeR<R1, with
R1560a0 for V54 andR15120a0 for all other potentials.
Typical values of the well depthe and its positionRm are
e'30 meV andRm'10a0. The long-range behavior of th
potential curves is dominated by the attractive induc
dipole-dipole interaction2C6 /R6. The ab initio potentials
have within<3% identicalC6 coefficients, since the long
range interaction is dominated by the~3s! valence electron
@11,16#. We use a singleC6 coefficient with a value of
C651938 a.u. as calculated by Derevianko and Dalga
@16#, based on the static polarizability of neon.

We characterize the potentialsVV by their classical phase
integral

FV5E
Rc

Rs
kV~R!dR1E

Rs

`

kV~R!dR5FV
R,Rs1FR.Rs,

~1!

with kV(R) the local wave number andRc the classical inner
turning point for zero collision energy. We chooseRs such
that for R,Rs the energy splittingDVV,V8(R)5VV(R)
2VV8(R) between theV potentials dominates over the ro
tational coupling

DVrot~R!52@\2/~2mR2!#d uV2V8u51

3A@P~P11!2VV8#A@J~J11!2VV8#,

with m the reduced mass,l the rotational angular momentum
and PW 5JW1 lW the total angular momentum. ForR.Rs the
opposite holds.

The first partFV
R,Rs of the phase integral has been calc

lated by numerical integration in the interval@Rc ,Rs#, with
Rs520a0. The contribution forR.Rs to the phase integra
is calculated analytically assuming a pure long-ran
2C6 /R6, behavior, resulting inFR.Rs53.34p.

The numerical results are given in Table I for bo
bosonic isotopes,20Ne* and 22Ne* . We see that the differen
V states have very different values ofFV , varying by as
much asDFV,V85FV2FV850.8p. This implies both a
different number of bound states and different positions
the resonances inaV . Asymptotic behavior of, or a reso
nance in the scattering length occurs when a quasibo
state lies close to the dissociation limit or has just moved i
the continuum.

Because the interaction potentials of neon are not kno
accurately enough to predicta, we have to varyFV over a
range equal top to predict the range ofa values that we can
expect for the spin-polarized Ne* system. Therefore, we in
troduce a scanning parameterf that we add toFV to create
a modified phase integralfV according to
01270
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fV5FV1f, ~2!

with fP@0,p#.
For simplicity, we assume for now that the phase diff

ences between theV potentialsDFV,V8 are constant and
equal to theab initio values given in Table I. Later on in Sec
IV, we will also varyDFV,V8 over an intervalp to investi-
gate the influence ofDFV,V8 on the scattering lengtha.

The classical phase integrals of the two bosonic isoto
of Ne* are related by the mass-scaling rule

22fV5~22/20!1/2 20fV . ~3!

Using the average phase integral over allV states^F&V

516.5p, we find an isotope shift equal to 0.81p. This
simple relation between the phase integrals of20Ne* and
22Ne* enables us to compare very easily the results obtai
for 20Ne* with those for 22Ne* .

III. ANALYTICAL APPROACH

A. Single-potential scattering length

The semiclassical analysis of the scattering length
atomic collisions by Gribakin and Flambaum@22# yields for
the s-wave scattering length of a potential with a long-ran
behavior,2C6 /R6,

aV5abgF12tanS fV2
p

8 D G ,
abg5cos~p/4!@A2mC6/4\#1/2@G~3/4!/G~5/4!#, ~4!

with G( ) the Gamma function andabg the background value
of the scattering length. The latter is fully determined by t
long-range behavior of the potential and is equal toabg
544.3a0. The position of the resonance inaV is equal to
fV

res modp5p/21p/855p/8. We define the widthGV of a
resonance inaV as

GV5fV~3abg!2fV~2abg!, ~5!

TABLE I. Classical phase integralFV and its difference
DFV,05FV2F0 with respect to theV50 potential of the spin-
polarized adiabatic molecularV states, connecting to the Ne*
1Ne* asymptotic limit with J54 and S52. The V states are
labeled byVg , where the gerade labelg reflects the symmetry of
the electron wave function under inversion around the cente
charge. Data are given for both bosonic isotopes20Ne* and 22Ne*
of Ne* .

20Ne* 22Ne*

V
FV

(p rad!
DFV,0

(p rad!
FV

(p rad!
DFV,0

(p rad!

4g 16.43 20.54 17.23 20.77
3g 16.86 20.11 17.68 20.34
2g 16.12 20.85 16.91 21.09
1g 16.36 20.61 17.16 20.84
0g 16.97 0 18.00 0
6-3
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MOGENDORFFet al. PHYSICAL REVIEW A 69, 012706 ~2004!
around the resonance positionfV
res . The scattering length

varies aroundabg with a probability of 75% of being posi
tive. The probability that at least one of the bosonic isoto
of Ne* is positive is much larger, 94%.

B. Gas-kinetic model

In a simple gas-kinetic approach, we define the ela
cross section as a weighted average of the elastic cross
tions sV ,

s5^8paV
2 &5sbg (

V50

J

wV
2 F12tanS fV2

p

8 D G2

. ~6!

Heresbg58pabg
2 5(0.53105)a0

2 is the background value o
the elastic cross section andwV is the amplitude of the pro
jection of the initial asymptotic rotational state on theV
basis, withw051/3 andwV.05A2/3. We assume that w
are in the low-temperature limit where the conditionka!1
holds, withk5A2mE/\ the asymptotic wave number andE
the collision energy in the reduced system.

In Fig. 3 we show the results for the elastic cross sect
of 20Ne* ~solid line! and 22Ne* ~broken line! as a function
of fP@0,p# @Eq. ~2!#. Two important characteristics in th
elastic cross section of Ne* immediately catch the eye. Firs
we see a rather large minimum valuesmin for the elastic
cross section and an increase of almost a factor of 2 in
probabilityPc that the elastic cross section is large enough
make BEC of Ne* feasible as compared to the singl
potential case, as can be seen in Table II.

Second, we see five resonances ins, attributable to the
five different V states of Ne* . This characteristic behavio
does not depend very much on the specific values ofDFV,0
as long as they are not very small (<0.05p). This behavior
is very different from the single-potential case, where we c
encounter an elastic cross section equal to zero and t
exists only one resonance.

The general picture is the same for both isotopes. Ho
ever, the elastic cross section of22Ne* is shifted with respect

FIG. 3. Elastic cross sections5^8paV
2 & in a gas-kinetic ap-

proach for20Ne* ~solid line! and 22Ne* ~broken line!, as a function
of the phase integralfP@0,p#. We observe five resonances due
the five contributing potentials, which also results in a minimu
valuesmin.0 for s.
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to the elastic cross section of20Ne* by the isotope shift of
0.81p. Depending on the actual phase integralfV of the
20Ne* system, it can thus be advantageous to switch to
less abundant bosonic isotope22Ne* , to optimize the value
of the elastic cross section. Choosing for each value off the
isotope with the largests yields an even larger minimum
value of s, as can be seen in Table II. In addition,Pc in-
creases from 78% in the single-isotope case to 99% for
ther isotope.

C. DIS model

Next, we investigate the scattering length in the DIS a
proximation, which has proven to be quite insightful for h
drogen@18,19#. In this approach, the energy splitting of th
internal states is neglected. For Ne* , this means that the
rotational splittingDVrot between the partial waves is ne
glected. In the DIS approximation, the scattering length
given by a weighted average of the fiveaV’s involved @19#

a5^aV&5abg (
V50

4

wVF12tanS fV2
p

8 D G . ~7!

From Eq.~7! it is clear that the resonance positionsfV
res of a

in the DIS approximation, coincide with the single-potent
resonance positions. They are completely determined by
values ofDFV,0 ,

fV
res5S 5

8
p2DFV,0Dmodp. ~8!

Figure 4 shows the scattering lengtha as a function of the
scanning parameterfP@0,p#. Again we observe five reso
nances in the scattering length. In this figure we have a
plotted the behavior of the single-potential scattering len
aV54 ~broken line!, showing clearly that the single-potentia
resonance positions coincide with the resonance position
a in the DIS approach.

Taking the weighted average ofaV does not change the
total probability for a positive scattering length (75%)
compared to the single-potential case~Sec. III A!. However,
the probability of encountering a large value ofa does in-
crease, as can be seen in Table II. Both the width of

TABLE II. Minimum value smin of the elastic cross section an
probability Pc for s>sc5(1.43105)a0

2 for a single isotope
(20Ne* ) and the set of two bosonic isotopes20Ne* and 22Ne* , as
calculated with the single-potential semiclassical model, the g
kinetic model, the DIS model, and the quantum-mechanical num
cal calculation.

Single isotope Either isotope

Model
smin

~units of 105a0
2)

Pc

(%)
smin

~units of 105a0
2)

Pc

(%)

Single potential 0 42 0.16 61
Gas kinetic 0.7 78 1.3 99

DIS 0 72 0.35 95
Numerical 0 42 0.17 67
6-4
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METASTABLE NEON COLLISIONS: ANISOTROPY AND . . . PHYSICAL REVIEW A69, 012706 ~2004!
resonances@Eq. ~5!# and the derivative]a/]f of a with re-
spect tof determine this probability. From Fig. 4 it is clea
that the total widthG of all five resonances combined
much larger than the single-potential resonance width.
width of each resonance is not only determined by the r
tive weight wV of its single-potential scattering length b
also by its relative positionfV

res with respect to the othe
resonances, and therefore depends sensitively on the p
differencesDFV,V8 between the potentials. An increase
width and derivative ofa in the DIS approach as compare
to the single-potential case therefore lead to a much largePc
~Table II!. Choosing the most advantageous bosonic isot
improves againsmin and Pc as well as the probability for
encountering a positive value ofa (95%) as compared to th
single-isotope case~Table II!.

IV. QUANTUM-MECHANICAL NUMERICAL
CALCULATION

A. Model

For the Ne* system, we can distinguish two regions
interest in the potentialsVV(R) ~Fig. 5!. At small internu-

FIG. 4. DIS result for the scattering lengtha ~solid line! as a
function of the parameterfP@0,p#, showing five resonances tha
are labeled with anV value because they are located at the posit
of the single-potential resonances inaV . For comparison we show
the behavior ofa4 ~broken line!.

FIG. 5. Interaction potentialV0 for theV50 molecular state of
two colliding spin-polarized Ne* atoms, with both range I~domi-
nant V splitting! for R<Rs520a0 and range II~dominant rota-
tional energy splitting! for Rs,R,Ra5200a0 indicated.
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clear separations~region I!, i.e., R,Rs , the splitting
DVV,V8(R) between the interaction potentialsVV is larger
than the differential rotational couplingDVrot(R). As a re-
sult, there is no coupling between differentV states but cou-
pling between differentl states. In this regionV is a good
quantum number and theuJVPMP& basis is the proper rep
resentation. HereM P is the projection ofP on the quantiza-
tion axis. BothP andM P are conserved during the collision
In a semiclassical picture we can describe this regime in
following way. The largeV-splitting results in a rapid pre

cession ofJW about the internuclear axis, much faster than

rotation of the axis itself as determined by the value ofu lWu.
The projection ofJW on the internuclear axis is thus con

served, while the magnitude oflW changes due to the chang

ing orientation ofJW with respect to the space-fixed tot

angular-momentum vectorPW .
At large internuclear separations~region II in Fig. 5!, i.e.,

R.Rs , the rotational coupling dominates the interaction: t
splitting DVV,V8(R) is smaller than the differential rotationa
couplingVrot(R). The relative motion of the colliding atom

results in a rotation of the internuclear axis with respect tJW

and therefore a change in the value ofV ~Fig. 1!. In this
regionV is not a good quantum number butl is, and we use
the uJlPMP& representation.

Ultracold collisions between spin-polarized Ne* atoms
are described by a five-channel problem: fiveV5 0, . . . ,4
channels in region I and fivel 50,2, . . . ,8channels in region
II. Only even partial waves contribute due to the symme
requirement of the wave function for bosons. The rotatio
energy barrier~5.6 mK for l 52, located at 78a0) is always
much larger than the collision energy (<0.5 mK). For this
reason, higher-order partial waves (lÞ0) do not contribute
to the incoming channel. However, in region I, the sho
range interactionDVV,V8 still couples the single incoming
channel uJ54 l 50 P54 M P54& to higher-order partial
waves. Because the tunneling probability forlÞ0 is negli-
gible (<1025), they only contribute to the elastic scatterin
process when they again couple to theuJ54 l 50 P54
M P54& initial state.

In our calculations we assume that the intermediate
gion, whereVrot(R) andVV,V8(R) are of the same order o
magnitude, is arbitrarily small, i.e., we assume a sudden t
sition from region I to region II atR5Rs . The scattering
problem now reduces to potential scattering and we
solve the uncoupled problem in region I in theuJVPMP&
basis and in region II in theuJlPMP& basis, for each channe
After transformation of the solutionuI(R) in region I atR
5Rs from the uJVPMP& basis to theuJlPMP& basis, we
connect it continuously to the long-range solutionuII(R) at
Rs , assuming equal local wave numbers@23#.

In very good approximation@24,25#, we can summarize
the behavior of the atoms in region I by means of the ac
mulated phase method. InR5Rs the radial wave function of
a single uncoupled channel is then given by

uI
V~Rs!5sin~FV

R,Rs1f1p/4!, ~9!

n

6-5
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with the extra phase shiftp/4 due to our choice of using th
classical phase rather than the quantum-mechanical acc
lated phase. After transformation to theuJlPMP& basis the
535 solution matrix is given by

uI
l~Rs!5TlVuI

V~Rs!, ~10!

with TlV the elements of the transformation matrixT be-
tween theuJVPMP& and theuJlPMP& basis.

In region II, the evolution of the radial wave functionuII
l

for R.Rs is governed by the radial Schro¨dinger equation

]2

]R2
uII

l ~R!1S k22
l ~ l 11!

R2
2

2mC6

\2R6 D uII
l ~R!50. ~11!

The connection of the short-~I! and long-range~II ! solutions
in the uJlPMP& representation atR5Rs determines the
boundary conditions for the numerical integration ofuII

l from
Rs to Ra , where the asymptotic limit of a vanishing potenti
is valid. At Ra , the numerical solution is connected to th
asymptotic radial wave function

uII
l ~Ra!5

1

Ak
@Ale

2 i (kRa2 lp/2)1Ble
i (kRa2 lp/2)!], ~12!

to determine the scattering matrixS5BA21. From the scat-
tering matrix we then obtain the scattering lengtha,

a52 lim
k→0

tan@ ln~S00!/2i #

k
. ~13!

B. Results

Using theab initio potentials of Sec. II we have calcu
lated the scattering length of20Ne* using the quantum-
mechanical calculation described in Sec. IV A. Again, w
have performed these calculations forfP@0,p#, to deter-
mine the range of scattering length and elastic cross sec
values that we can expect for the Ne* system. Figure 6

FIG. 6. Full quantum-mechanical calculation of the scatter
lengtha ~solid line! as a function offP@0,p#. For comparison we
also have depicted the scattering lengtha obtained with the DIS
model~broken line!. Both position and width of the resonances ina
differ from the DIS result: anV label cannot be attached to an
separate resonance.
01270
u-

on

shows the scattering lengtha ~solid line! as a function off.
For comparison, we have included the result fora obtained
with the DIS model~broken line! ~Sec. III C!, in which the
positions of the resonances ina correspond to the single
potential resonance positions inaV . The resonance position
fV

res of a are shifted in an inhomogeneous way with resp
to those obtained with the DIS method and also the wid
GV of the individual resonances differ significantly. We ca
no longer attach anV label to each of the resonances, as
possible in the DIS approach. In the DIS model, we negl
the rotational splittingVrot between the partial waves, so th
effectively all partial waves are equivalent. Apparently, bo
the resonance positions as well as the widths of the in
vidual resonances in the numerical results fora are influ-
enced by the coupling to higher-order partial waves. This
not surprising: close lying bound states from otherV poten-
tials will most likely shift the bound state and thus the co
responding resonance position. Clearly, neglecting the r
tional splitting of the internal states is not justified in the ca
of Ne* .

However, despite these qualitative differences in the
havior of a, the quantitative behavior is the same as in t
single-potential case. The probabilities for encountering
positivea value and an elastic cross sectionsc are equal to
those found in the single-potential case~Table II!. Although
the total width of the resonances is larger, this is comp
sated by a decrease in the derivative ofa. Moreover, choos-
ing the most advantageous bosonic isotope for each valu
the scanning parameterf leads to a similar increase in thes
values for both the full quantum-mechanical calculation
the single-potential case.

To investigate the influence ofDFV,V8 on the positions
of the resonances ina, we have varied the classical pha
differenceDF4,0 of one of theV potentials (V54), while
keeping the other classical phase differences fixed at theiab
initio value~Table I!. Starting at itsab initio value, the clas-
sical phase difference

Df4,05DF4,01Df, ~14!

with DfP@0,p#, is varied overDf4,0P@20.54p,0.46p#.
In this way, the bound states in theV54 potential encounter
the bound states in all otherV potentials. The position of the
resonancesfV

res for this modified set ofab initio potentials is
determined in the usual way, by scanning the parameterf in
the phase integralfV @Eq. ~2!# over the range@0,p#.

The results are shown in Fig. 7, where we have plotted
positionfV

res of the five resonances ina as a function of the
shift Df in the bound states of theV54 potential. The
broken lines are drawn to guide the eye. We observe that
of the resonances remain at a fixed position, while all th
others shift proportional toDf with a slope equal to
(20.3460.02)p and separated by (0.3060.02)p. Narrow
avoided crossings occur when ‘‘constant’’fV

res meet fV
res

varying like }2Df at Df5(0.461n)p and Df5(0.52
1n)p, with n50,1,2, . . . . In addition, very broad avoided
crossings occur betweenfV

res varying like }2Df at Df
'(0.11n)p, with n50,1,2, . . . . We have plottedfV

res

g
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over a rangeDfP@0,2p#, to show the avoided crossing
Varying one of the other classical phase differencesDfVÞ4,0
yields similar results.

Clearly, the quasibound states of the system are no lon
pure uJVPMP& states. Apparently, the quasibound sta
whose resonance positionsfV

res vary proportional toDf are
strongly coupled to theuJV54PMP& state and those whos
fV

res remain constant are only very weakly coupled to t
uJV54PMP& state. When two strongly coupled resonanc
approach each other, a strong, broad avoided crossing oc
Similarly, a weak, narrow avoided crossing occurs whe
weakly coupled resonance approaches one of the other
nances.

This picture is consistent with the behavior of the width
the resonances as a function ofDf. This becomes clea
when we look at a simpler, more transparent two-chan
i.e.,J51, numerical calculation of the scattering length. T
results of this calculation are consistent with the full fiv
channel calculation. In Fig. 8~a! we have plotted the phas
integralsfV

res at which a resonance ina occurs as a function
of Df for J51. Both resonance positions vary proportion
to Df with a slope equal to (20.5060.02)p, and with
broad avoided crossing between them atDf5(0.11n)p,
with n50,1, . . . .They are strongly coupled, which is als
reflected in the behavior of the width of the resonancesGV

@Fig. 8~c!#, which varies as a sine~broken line! between 0
andG. At the avoided crossings the widths of the resonan
become equal. The total width of both resonances comb
G5G01G1 is conserved, but one resonance is wide wh
the other is narrow. This periodic change in the resona
width is due to the periodic change in the coupling of bo
quasibound states to the incomingl 50 channel with chang-
ing fV

res .
The weakly coupled case can be illustrated by reduc

the value ofC6, because in the absence of an induced dipo
dipole interaction2C6 /R6 no coupling between the quas
bound states is possible. This can be understood in the
lowing way. With a decreasing dipole-dipole interaction t

FIG. 7. Numerical calculation of the phase integralsfV
res ~filled

squares! at which a resonance ina occurs for a modified set o
potentials, with the phase integral differenceDf4,0 varying from its
ab initio value20.54p to 11.5p by varyingDf over 2p. In this
way, the bound levels of theV54 state ‘‘encounter’’ the bound
levels in all otherV states. The broken lines are drawn to guide
eye.
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rotational energy barrier increases both in height and wid
As a result, the region aroundRs in which rotational cou-
pling between the differentV states takes place decreas
and eventually vanishes. Figures 8~b! and 8~d! show the
resonance positions and widths for a vanishing value ofC6,
simulated by assuming a modified valueC685C6/100. One
resonance position remains constant, while the other va
proportional toDf and the widths of the resonances a
small and remain constant, except at the avoided cros
where they approach each other. This is the behavior see
some of the resonances ina for J54 and is qualitatively the
same as the behavior of the resonance positions and w
in the DIS model, where coupling between the quasibou
states is not taken into account.

V. CONCLUDING REMARKS

Elastic collisions between spin-polarized Ne* atoms are
governed by multiple interaction potentials. This uniq
property of Ne* among the BEC species and candidates i
result of the anisotropic interaction between them. Bo
simple analytical and full quantum-mechanical calculatio
of the scattering lengtha of Ne* show that the resulting
scattering length has five resonances. A simple gas-kin
picture yields very favorable but unrealistic results for t
elastic collision cross section that are not compatible with
numerical calculations. This approach is only valid for
incoherent mixture ofV states. Comparison between the n
merical results and the DIS model reveals thata is also not
simply a weighted average over the single-potential re

FIG. 8. Numerical two-channel (J51) calculation of position
~a! and ~b! and width ~c! and ~d! of the resonances ina for a
modified set of potentials, withDf1,0 varying from its ab initio
value20.61p to 11.39p by varyingDf over 2p. The figures on
the right-hand side~b! and ~d! show the results for a reducedC68
5C6/100. The broken lines are drawn to guide the eye and
arrows indicate the avoided crossings. In the presence of an ind
dipole-dipole interaction~a! the resonance positions vary both pr
portional to Df and are strongly coupled, and the width of th
resonances~c! varies as a sine. For a small dipole-dipole interacti
~b! one of the resonance positions remains constant, while the o
varies proportional toDf. The width of the resonances~d! remains
constant, except at the avoided crossing where they coincide~ar-
row!.
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nancesaV and that the resonances ina cannot be assigned t
a singleV state. Although the DIS approach assumes a
herent mixture ofV states, coupling between the quasibou
states is not taken into account, and it therefore does
describe the Ne* system accurately. The overall behavior
a is similar to that of the usual single-potential scatteri
length: neither the probability for encountering a positive n
a large value ofa is enhanced by the presence of five inste
of one resonances.

The presence of an induced dipole-dipole interact
leads to strong coupling between the differentV states and
causes a broadening of the resonances, resulting in q
bound states that are a linear combination of differ
uJVPMP& states. This coupling between the differe
uJVPMP& states in turn leads to the inhomogeneous shif
the resonance positions and widths in the quantu
mechanical calculation as compared to the DIS approa
However, the dependence of the resonance positions
widths on the input potentials is quite straightforward. T
resonance positions vary either directly proportional to
relative phase differences between theV potentials or not at
all, depending on the exact composition of its quasibou
state. The width of the strongly coupled resonances~whose
ys

er,

.W

nd

.V

ys

01270
-
d
ot

r
d

n

si-
t

t
f
-
h.
nd

e

d

positions vary}2Df) is determined by the coupling to th
ingoing channel, which varies periodically withDf. The
width of the weakly coupled resonances~whose positions do
not vary with Df) is constant, since the coupling to th
ingoing channel does not change. The total change in all
resonance positions is always equal to2Df and the total
width is conserved.

The possibility to choose between the two bosonic i
topes of Ne* to optimize the value of the elastic cross se
tion, greatly enhances the prospects for achieving BEC w
Ne* ~Table II!. Large beam fluxes of both bosonic isotope
crucial in obtaining favorable initial conditions for efficien
evaporative cooling, have been realized at the Eindho
experiment @26#, therefore choosing the isotope with th
most favorable scattering length is feasible.
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