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Abstract. We study the coherence properties of an atom laser, which operates by extracting atoms
from a gaseous Bose–Einstein condensate via a two-photon Raman process, by analysing a recent
experiment (Hagleyet al 1999Phys. Rev. Lett.83 3112). We obtain good agreement with the
experimental data by solving the time-dependent Gross–Pitaevskii equation in three dimensions
both numerically and with a Thomas–Fermi model. The coherence is strongly affected by the
space-dependent phase developed by the condensate when the trapping potential is turned off.

1. Introduction

One of the most exciting prospects resulting from the Bose–Einstein condensation of alkali
vapours [1–3] is the possibility of producing an intense, coherent, and directed beam of matter
waves, i.e., an atom laser. Indeed, prototype atom lasers have already been demonstrated [4,5].
Potential atom-laser applications include time-and-frequency standards, atom holography,
and nanolithography. A critical element in the operation of an atom laser is the ‘output
coupler’ by which atoms are coherently extracted from the condensate [6]. The design of this
element is key to controlling the properties of the atom-laser beam [7]. At least two output-
coupler mechanisms have been demonstrated. Condensate atoms have been extracted by radio
frequency fields [8, 9] and by two-photon Raman transitions [10]. A quasi-continuous atom
laser was demonstrated recently [5] by using a rapid-fire sequence of laser pulses each of which
caused condensate atoms to undergo a Raman transition that transferred momentum while
simultaneously changing their internal state so that they were not trapped by the magnetic
potential. Earlier theoretical studies of the properties of atom lasers [7, 11–13] made no
comparisons of theory and experiment. This paper examines the coherence properties of atom-
laser wavepackets by analysing a recent NIST experiment [14] which probes such properties by
measuring the decay of the interference contrast of two overlapping wavepackets outcoupled
from a Na atom condensate and separated by a variable delay time1t .

‖ Present address: Institute of Experimental Physics, Optics Division, Warsaw University, ul.Hoza 69, Warsaw
00-681, Poland.
¶ Present address: Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
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2. Description of experiment

A parent condensate with wavefunction90(r, t1) is prepared at timet1. In one experiment the
harmonic trapping potential was left on all the time, and we taket1 = 0. In another experiment,
the trapping potential was turned off and the condensate allowed to expand freely for up to
t1 = 5 ms. A 100 ns standing-wave laser pulse was applied at timet1 with a wavelength
λL = 589 nm, detuned 600 MHz to the red of atomic resonance. This first laser pulse diffracts
the condensate [15] to make two wavepacketsψ±1 moving in thez-direction with momenta
±2p, wherep = h̄k = h/λL. We consider only the wavepacket with wavevector +2k, since
the problem is symmetric. At timet2 = t1 +1t , the wavepacket evolves to

ψ+
1 (r, t2) = φ1(r, t2)e

i2kze−i 4ER
h̄
1t , (1)

whereER = h̄2k2

2m andm is the atomic mass. The slowly varying envelope functionφ1 is initially
just a copy of the parent condensate wavefunction with norm|α|2� 1: φ1(r, t1) = α90(r, t1).
In the experiment|α|2 ≈ 0.02. The momentum spread of90 is very small compared with
2h̄k. The first wavepacket moves1z = v1t in time1t = t2 − t1, wherev = 2h̄k/m is the
group velocity (60µm ms−1). Hence, a good approximation to the slowly varying envelope
at time t2 is given byφ1(r, t2) = α90(r − 1z, t1). This approximation does not take into
account the diffraction of the envelope nor does it take into account the acceleration of the
high-momentum component by the zero-momentum component, as discussed in section 4.

A second standing-wave laser pulse at timet2 = t1+1t creates a second set of wavepackets
ψ±2 , whereψ+

2 (r, t2) = φ2(r, t2)ei2kz andφ2(r, t2) = α90(r, t2). The combined number
of atoms in the +2k wavepacket is〈|ψ+

1 + ψ+
2 |2〉r, where the brackets imply an integration

over spatial coordinates. This fast +2k wavepacket soon clears the slowly expanding parent
condensate and later can be imaged experimentally. The number of atoms in the +2k

wavepacket is proportional to the following contrast functionC(t1,1t), defined so as to vary
between 0 and 1:

C(t1,1t) ≡ 1

4α2
〈|ψ+

1 +ψ+
2 |2〉r (2)

= 1

4

〈∣∣∣∣φ1(r −1z, t2)
α

e−i 4ER1t
h̄ +

φ2(r, t2)

α

∣∣∣∣2
〉
r

(3)

= 1
2 + 1

20(t1,1t). (4)

The correlation function

0(t1,1t) = 1

2|α|2 〈ψ
+
1ψ

+∗
2 +ψ+∗

1 ψ
+
2 〉r, (5)

is given by

0(t1,1t) = Re

〈
ei 4ER1t

h̄ φ∗1(r −1z, t2)φ2(r, t2)

|α|2
〉
r

. (6)

The correlation function0(t1,1t) in equation (6) provides a measure of the spatial and
temporal coherence of the outcoupled wavepackets. In the hypothetical case that the moving
packets are plane waves (φ1 = φ2 = constant), then0(t1,1t) = cos(4ER1t/h̄) varies
between +1 when the wavepackets are in phase (4ER1t/h̄ = 2nπ or 1t = nτ , where
τ = h

4ER
= 10µs for Na atoms) and−1 when they are out of phase (1t = (n + 1

2)τ ). The
two packets constructively and destructively interfere in these two respective cases, giving a
contrast functionC(t1,1t)which changes from 1 to 0 in a time1t = τ/2. Actual condensate
wavepackets of finite Thomas–Fermi (TF) radiuszTF [16] in the z-direction will physically
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separate after times of the order oftTF = 2zTF/v, after which0→ 0 andC(t1,1t)→ 1
2. Thus

C(t1,1t) oscillates rapidly between 1 and 0 when1t � tTF and1z � zTF, and approaches
1
2 when1t > tTF and1z > 2zTF. We will see that whent1 is long enough for significant
phase modulation to have developed across the condensate due to the mean field term in the
Gross–Pitaevskii (GP) equation, thenC(t1,1t) drops to1

2 in a time short compared withtTF.
In the NIST experiment, the harmonic trap holding the initial condensate had frequencies

ω
2π of 14 Hz, 28/

√
2 Hz, and 28 Hz in thex-, y-, andz-directions, respectively, and a mean

frequency of ω̄2π = 28/
√

2 Hz. If the parent condensate has 1.5×106 atoms,zTF(x) = 22µm
andtTF = 740µs. The characteristic time for developing phase modulation (i.e. momentum
spread) across the condensate is 1/ω̄ = 8 ms. The experimentalt1 varied from 0 to 5 ms, and
1t from 0 to around 500µs. Wavepacket images were taken about 6 ms aftert1, long after the
fast wavepacket has cleared the stationary, slowly expanding parent condensate. The number
of atoms in the±2k wavepackets could be measured using such images.

The experimental on-resonant absorption imaging technique does not allow the
determination of the number of atoms,N , in the parent condensate (because the parent
image corresponds to complete absorption of the probe light used for imaging). Therefore,
in order to obtain a signal that is not sensitive to shot-to-shot fluctuations inN , the NIST
experiment actually utilized a second pair of standing-wave pulses to produce a new set of
±2k wavepackets. The first pulse of the second pair was applied at timet3 = t1 + 3 ms,
after the fast wavepackets from the pulse pair at(t1, t2) have moved away from the parent
condensate. The second pulse of the second pair was applied att4 = t3 + 1t + τ/2, where
τ/2 = 5 µs. Thus, when1t � tTF, the contrast functionC2(t3,1t + τ/2) for the second
pulse pair is exactly out of phase with the contrast functionC1(t1,1t) for the first pulse pair.
The experimental images separately determine the number of atoms in the±2k wavepackets
from the (t1, t2) and the(t3, t4) pulse pairs. The normalization to the number of atoms in
each condensate, which varies from shot to shot, is accomplished by calculating the following
‘signal’ function:

S(t1, t3,1t) = C(t1,1t)

C(t1,1t) +C(t3,1t + τ/2)
. (7)

Just likeC, the signalS oscillates rapidly between 0 and 1 for1t � tTF and approaches12
when1t > tTF.

A ‘coherence time’, 1tc, for the output coupled wavepackets can be defined
using the correlation function0(t1,1t). The definition of a correlation time is not
unique. Two commonly used definitions for correlation times in optics are:1tc(t1) =∫∞

0 d(1t)|0(t1,1t)|2, and1t2c (t1) =
∫∞

0 d(1t)(1t)2|0(t1,1t)|2/
∫∞

0 d(1t)|0(t1,1t)|2.
Here we define a coherence time1tc(t1, t3) related to the decay of the signal function
S(t1, t3,1t). 1tc(t1, t3) is the time for the envelopeSe of S to decay halfway from its1t = 0
value of 1 to its long time limiting value of12, that is,Se(t1, t3,1tc) = 0.75. A corresponding
‘coherence length’ is1zc(t1, t3) = v1tc(t1, t3). The coherence time and length defined here
measure the decay of the wavepacket interference due to the unitary time evolution of the
zero-temperature condensate wavefunction. In this case there is no decoherence due to the
interactions with a bath or due to inelastic processes.
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3. Theoretical methods

The time-dependent GP (TDGP) equation describes the dynamics of9(r, t), which includes
the parent condensate plus the fast±2k wavepackets:

ih̄
∂9

∂t
= − h̄

2

2m
∇29(r, t) + (Vtrap(r, t) + Vlaser(r, t))9(r, t) +U0N |9(r, t)|29(r, t), (8)

whereU0 = 4πh̄2a/m, a is the s-wave scattering length,N is the total number of condensate
atoms andVtrap(r, t) is the trapping potential. The contrast functionsC1 andC2 can be
calculated from9(r, t). The interaction of condensate atoms with the four standing-wave
laser pulses can be written as

Vlaser(r, t) = VL cos(2k · r)
4∑
n=1

f (t − tn), (9)

whereVLf (t) is the single laser pulse envelope, andf is normalized such that
∫∞
−∞ dtf (t) = δt ,

whereδt is the effective laser pulse duration. Hereδt = 100 ns is short compared with1t .
The factorstn are the times at which the four experimental pulses are applied.

The modification to the condensate wavefunction caused by a short-duration, low-intensity,
standing-wave laser pulse can be described well by using the Raman–Nath approximation [17].
Thus we assume that during each light pulse, the light-shift potential energy (9) dominates
all other terms in equation (8). The time-evolution operator during any pulsen is then
approximated to first order as 1− i[VLδt/h̄] cos(2k · r), where the phase shiftVLδt/h̄ � 1
in the experiments under consideration. This operator relates the wavefunction after the laser
pulse with that before the pulse in a simple way:

9(r, tn + δt) ' 90(r, tn)− i

2h̄
VLδt × [e2ik·r + e−2ik·r]90(r, tn). (10)

The effect can be qualitatively understood in momentum space. Before the first pulse, there is
only a component centred at momentum = 0. After the pulse, sidebands that are proportional to
the initial wavefunction are present at momentum =±2h̄k. Each subsequent pulse is modelled
in the same way, since population in higher-order momentum components is negligible. We
have tested equation (10) by numerically solving a one-dimensional (1D) form of the GP
equation (8) for a single short pulse. The resulting numerical wavefunction differs only
slightly from the closed form solution of equation (10). The±2h̄k components acquire a
very small spatially varying phase in the numerical simulations, which is associated with the
mean field effects that have been ignored in developing equation (10). Overall, the description
of equation (10) is a very good one.

We have used two different methods to evolve9(r, t). The first is an approximate method
which we call the time-dependent TF (TDTF) method. Let us first consider the case when the
trapping potential is turned off att = 0 prior to the first pulse att1. OnceVtrap is removed,
the parent condensate,90(r, t), evolves freely, develops spatial phase variation, i.e. phase
modulation, and expands somewhat. The 3D form of90(r, t) can be easily found since, for
expanding condensates where the TF approximation is valid, the solution of the TDGP is self-
similar, i.e., it can be transformed to its original shape (before release) by suitable axis scalings.
The time dependence of the scale parameters has been shown [18] to obey coupled nonlinear
ordinary differential equations. Once the atoms in high-momentum states clear the parent
condensate, they evolve as free particles (ifVLδt/h̄ � 1) and move with velocity±2h̄k/m.
In our 3D model, the full condensate wavefunction thus evolves after application of the first
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pulse as follows:

9(r, t) ≈ 90(r, t)− i

2h̄
VLδte

−i4ER(t−t1)/h̄[e2ik·r90(r − v(t − t1), t1)
+e−2ik·r90(r + v(t − t1), t1)]. (11)

Using equations (10) and (11) we can develop the condensate wavefunction for any number
of pulses and delays. When the trap is left on, the main modification to the above analysis is
that the parent condensate does not develop phase or expand.

The second method is a numerical propagation of the 3D solution to the TDGP equation
using the slowly varying envelope approximation (SVEA) to reduce the grid size. The SVEA
is excellent here because the momentum spread ¯h1k0 of90 is very small compared with 2¯hk.
We have verified that this method gives excellent agreement with full numerical solutions of the
TDGP equation in one and two dimensions. Consequently with the SVEA we can efficiently
calculate accurate contrast functions for a zero-temperature condensate for any time sequence
of the trapping potential and laser pulses.

The SVEA to the GP equation is made by writing the wavefunction as

9(r, t) =
1∑

l=−1

ϕl(r, t)exp(iklr − iωlt). (12)

Here we have explicitly separated out the fast oscillating phase factors representing central
momentak−1 = −2kẑ, k0 = 0, k1 = +2kẑ and kinetic energyEl = h̄ωl = h̄2k2

l /2 m.
For example, the component labelled byl = 1 represents fort1 < t < t2 the wavepacket
that results from applying the laser pulse att = t1, whereas fort > t2 it represents the net
wavepacket that results from the sequence of both pulses. Since the slowly varying envelopes
ϕl(r, t) vary in time and space on much slower scales than the phase factors, the spatial grid
used for numerical simulations of the time evolution of the dynamics can have a step size
of the order of(1k0)

−1, which is much larger than(2k)−1. Substituting the SVEA form
of equation (12) for the wavefunction into the GP equation, collecting terms multiplying the
same phase factors, multiplying by the complex conjugate of the appropriate phase factors, and
neglecting all terms that are not phase matched (i.e. those for which momentum and energy
are not conserved), we obtain a set of coupled equations for the slowly varying envelopes
ϕl(r, t):(
∂

∂t
− (h̄kl/m) · ∇ +

i

h̄

(−h̄2

2m
∇2 + V (r, t)

))
ϕl(r, t)

= − i

h̄
U0N

∑
jqs

δ(kl − kj + kq − ks)δ(ωl − ωj + ωq − ωs)

×ϕj (r, t)ϕ∗q (r, t)ϕs(r, t). (13)

Only phase-matched terms (terms for whichkl−kj +kq−ks = 0 andωl−ωj +ωq−ωs = 0)
are retained on the right-hand side of equations (13). The SVEA equations for our case are
given explicitly by(
∂

∂t
+

i

h̄

(
− h̄

2

2m
∇2 + V (r, t)

))
ϕ0 = − i

h̄
U0N(|ϕ0|2 + 2|ϕ1|2 + 2|ϕ−1|2)ϕ0, (14)(

∂

∂t
− (2h̄k/m) · ∇ +

i

h̄

(−h̄2

2m
∇2 + V (r, t)

))
ϕ1

= − i

h̄
U0N(|ϕ1|2 + 2|ϕ0|2 + 2|ϕ−1|2)ϕ1, (15)
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Figure 1. Comparison of calculated TDGP (solid curve)
and TDTF (dashed curve) and experimental (points)
signal functionsS(t1 = 0, t3 = 3 ms,1t) versus1t for
the case where the trap with atoms was held on during
the laser-pulse firings. (a) Comparison during the first
50µs where the delay was stepped in increments of 1µs.
(b) Comparison of the TDGP signal with the measured
signal envelope over the full delay range to 500µs. The
TDTF model gives essentially the same envelope. The
experimental points have been normalized to unity at
short times.

Figure 2. Comparison of TDGP (solid curve) and TDTF
(dashed curve) signal functionsS(t1, t3,1t) with the
data (points) for the case where the trap potential was
turned off att = 0. (a) (t1, t3 = (1.2 ms, 4.2 ms) for
5× 105 atoms in the trap. (b) (t1, t3) = (5 ms, 8 ms)
for 2.5× 106 atoms in the trap. The experimental points
have been normalized to unity at short times.

(
∂

∂t
− (−2h̄k/m) · ∇ +

i

h̄

(−h̄2

2m
∇2 + V (r, t)

))
ϕ−1

= − i

h̄
U0N(|ϕ−1|2 + 2|ϕ0|2 + 2|ϕ1|2)ϕ−1. (16)

These equations assume that the condensate wavepackets are normalized so that∑1
l=−1

∫
dr|ϕl|2 = 1. We use a standard Fourier transform split-operator method for

propagating these coupled equations in three dimensions, given the initial conditions generated
by equation (10). In practice, a numerical grid of 64 points spanning±2 TF radii in each
orthogonal direction gives excellent numerical accuracy. The contrast function in equation (2)
is calculated from the numerical wavepackets represented as in equation (12).

4. Comparison of theory and experiment

Figure 1 compares the calculated results forS(t1, t3,1t) with the NIST data [14] for the case
where the trap was held on. In each panel the experimental signal is plotted against the delay
1t used for the first pair of pulses. The signal was measured for1t in 1 µs increments up
to1t = 50µs after which the increment was 30µs up to1t = 530µs. Figure 1(a) shows
excellent agreement with the short-time data, which were normalized to unity at the first peak
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at 10µs. The TDGP and TDTF calculations also agree well, except that the phase of the latter
slightly lags behind that of the former because of the small acceleration of the fast wavepackets
by the effective potential provided by the parent condensate. The long-time evolution of the
signal envelope agrees very well between the TDGP and TDTF calculations. The coherence
time1tc predicted by the two models, around 275µs, is slightly longer than the measured
value of 225± 40 µs. When the trap is on, the decay ofS(t1, t3,1t) is simply due to the
reduction of the time-dependent overlap of the moving outcoupled wavepackets. Consequently,
the calculated and measured coherence lengths,1zc = v1tc, are 16µm and 13± 2 µm
respectively, about equal to the characteristic size of the parent condensate,zTF = 22 µm.
This also implies that coherence extends essentially across the entire outcoupled wavepacket:
i.e., the wavepacket has a spatially uniform phase. This result is consistent with a recent
investigation of the coherence of a static condensate using Bragg spectroscopy [19].

Figure 2 compares the experimental data forS(t1, t3,1t) with the TDGP and TDTF
calculations for two cases for which the trap was turned off att = 0. In figure 2(a),
(t1, t3) = (1.2 ms, 4.2 ms), whereas in figure 2(b), (t1, t3) = (5 ms, 8 ms). The data points
are normalized to unity as1t → 0. The agreement between the two calculations, as well as
the agreement between experiment and theory, is good for both cases. The coherence times
and lengths are much smaller for these trap-off cases than for the trap-on case in figure 1. For
figure 2(a) the respective TDGP and TDTF1tc are 82 and 80µs as compared with 65±10µs
for the experiment. For figure 2(b) the corresponding theoretical values of 38µs and 37µs
compare with a measured value of 45± 10 µs. The respective coherence lengths for the
(1.2 ms, 4.2 ms) and (5 ms, 8 ms) cases are 5µm and 2µm, much smaller thanzTF. Since
1zc is substantially smaller than the condensate size, wavepacket separation is not the only
source of signal decay.

The high rate of signal decay when the trap is off is due to the particle interactions that give
rise to the nonlinear term in the GP equation. When the trap potential is removed, the parent
condensate experiences the effective potentialNU0|90|2, which causes the condensate to
expand. This causes phase modulation to develop across the condensate, which is associated
with an increased spread in the condensate momentum distribution. For example, figure 1
of [14] shows the spatial oscillations in Re(90) and Im(90) due to this phase modulation.
The presence of these oscillations in90(r, t) spoil the wavefunction overlap when packet 1 is
translated by1z during the interval1t , and lead to a much faster loss of coherence between
the packets than for the trap-on case. This coherence loss does not represent decoherence due
to interactions with an enviroment, but is a consequence of the reduced interference between
the packets that results from the spatially dependent phase evolution of90(r, t). The longert1
is, the greater the coherence loss will be. Since the characteristic time scale to reach terminal
momentum spread is 1/ω̄ = 8 ms, much coherence loss is to be expected for the example in
figure 2(b).

In conclusion, outcoupled wavepacket coherence times and lengths predicted by solving
the 3D SVEA to the TDGP equation are in excellent agreement with data from a recent
experiment which measured coherence properties of outcoupled atom-laser wavepackets. The
results of the 3D TDTF model are also in good agreement with the SVEA results and the
experimental data. Since the outcoupled wavepackets are copies of the parent condensate, the
experiment probes both the coherence of the parent condensate as well as that of the outcoupled
wavepackets. Spatial and temporal coherence is maintained across the parent condensate while
the trap is left on, but is rapidly lost when the trap is turned off, due to phase modulation which
develops across the condensate.
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