1,080 research outputs found
Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals
The femtosecond optical pump-probe technique was used to study dynamics of
photoexcited electrons and coherent optical phonons in transition metals Zn and
Cd as a function of temperature and excitation level. The optical response in
time domain is well fitted by linear combination of a damped harmonic
oscillation because of excitation of coherent phonon and a
subpicosecond transient response due to electron-phonon thermalization. The
electron-phonon thermalization time monotonically increases with temperature,
consistent with the thermomodulation scenario, where at high temperatures the
system can be well explained by the two-temperature model, while below
50 K the nonthermal electron model needs to be applied. As the
lattice temperature increases, the damping of the coherent phonon
increases, while the amplitudes of both fast electronic response and the
coherent phonon decrease. The temperature dependence of the damping of
the phonon indicates that population decay of the coherent optical
phonon due to anharmonic phonon-phonon coupling dominates the decay process. We
present a model that accounts for the observed temperature dependence of the
amplitude assuming the photoinduced absorption mechanism, where the signal
amplitude is proportional to the photoinduced change in the quasiparticle
density. The result that the amplitude of the phonon follows the
temperature dependence of the amplitude of the fast electronic transient
indicates that under the resonant condition both electronic and phononic
responses are proportional to the change in the dielectric function.Comment: 10 pages, 9 figures, to appear in Physical Review
Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films
We report on the diagnostic of ultrafast pulses by frequency-resolved optical gating (FROG) based on strong third-harmonic generation (THG) in amorphous organic thin films. The high THG conversion efficiency of these films allows for the characterization of sub-nanojoule short pulses emitting at telecommunication wavelengths using a low cost portable fiber spectrometer
Effect of light polarization on plasma distribution and filament formation
We show that, for 200 fs light pulses at 790 nm, the formation of filaments
is strongly affected by the laser light polarization . Filamentation does not
exist for a pure circularly polarized light, propagating in vacuum before
focusing in air, while there is no difference for focusing the light in air or
vacuum for linearly polarized light.Comment: 4pages 2 figure
Phase shifts in nonresonant coherent excitation
Far-off-resonant pulsed laser fields produce negligible excitation between
two atomic states but may induce considerable phase shifts. The acquired phases
are usually calculated by using the adiabatic-elimination approximation. We
analyze the accuracy of this approximation and derive the conditions for its
applicability to the calculation of the phases. We account for various sources
of imperfections, ranging from higher terms in the adiabatic-elimination
expansion and irreversible population loss to couplings to additional states.
We find that, as far as the phase shifts are concerned, the adiabatic
elimination is accurate only for a very large detuning. We show that the
adiabatic approximation is a far more accurate method for evaluating the phase
shifts, with a vast domain of validity; the accuracy is further enhanced by
superadiabatic corrections, which reduce the error well below .
Moreover, owing to the effect of adiabatic population return, the adiabatic and
superadiabatic approximations allow one to calculate the phase shifts even for
a moderately large detuning, and even when the peak Rabi frequency is larger
than the detuning; in these regimes the adiabatic elimination is completely
inapplicable. We also derive several exact expressions for the phases using
exactly soluble two-state and three-state analytical models.Comment: 10 pages, 7 figure
Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in sub-ablation conditions
An investigation of ultrashort pulsed laser induced surface modification due
to conditions that result in a superheated melted liquid layer and material
evaporation are considered. To describe the surface modification occurring
after cooling and resolidification of the melted layer and understand the
underlying physical fundamental mechanisms, a unified model is presented to
account for crater and subwavelength ripple formation based on a synergy of
electron excitation and capillary waves solidification. The proposed
theoretical framework aims to address the laser-material interaction in
sub-ablation conditions and thus minimal mass removal in combination with a
hydrodynamics-based scenario of the crater creation and ripple formation
following surface irradiation with single and multiple pulses, respectively.
The development of the periodic structures is attributed to the interference of
the incident wave with a surface plasmon wave. Details of the surface
morphology attained are elaborated as a function of the imposed conditions and
results are tested against experimental data
Calibration of WAVE in irrigated maize: fallow vs. cover crops.
Nitrate leaching decreases crop available N and increases water contamination. Replacing fallow by cover crops (CC) is an alternative to reduce nitrate contamination, because it reduces overall drainage and soil mineral N accumulation. A study of the soil N and nitrate leaching was conducted during 5 years in a semi-arid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.), and fallow. Cover crops, sown in October, were killed by glyphosate application in March, allowing direct seeding of maize in April. All treatments were irrigated and fertilised following the same procedure. Soil water content was measured using capacity probes. Soil Nmin accumulation was determined along the soil profile before sowing and after harvesting maize. Soil analysis was conducted at six depths every 0.20m in each plot in samples from 0 to 1.2-m depth. The mechanistic water balance model WAVE was applied in order to calculate drainage and plant growth of the different treatments, and apply them to the N balance. We evaluated the water balance of this model using the daily soil water content measurements of this field trial. A new Matlab version of the model was evaluated as well. In this new version improvements were made in the solute transport module and crop module. In addition, this new version is more compatible with external modules for data processing, inverse calibration and uncertainty analysis than the previous Fortran version. The model showed that drainage during the irrigated period was minimized in all treatments, because irrigation water was adjusted to crop needs, leading to nitrate accumulation on the upper layers after maize harvest. Then, during the intercrop period, most of the nitrate leaching occurred. Cover crops usually led to a shorter drainage period, lower drainage water amount and lower nitrate leaching than the treatment with fallow. These effects resulted in larger nitrate accumulation in the upper layers of the soil after CC treatments
Designing for comfort in shared and automated vehicles (SAV): a conceptual framework
To date, automotive design and research is heavily biased towards the driver. However, with the rapid advance of vehicle automation, the driving task will increasingly being taken over by a machine. Automation by itself, however, will not be able to tackle the transport challenges we are facing and the need for shared mobility is now widely recognized. Future mobility solutions are therefore expected to consist of Shared and Automated Vehicles (SAV). This means that the passenger experience will take center stage in the design of future road vehicles. Whereas at first sight this may not appear to be different to the experience in other modes of transport, automation and shared mobility introduce different psychological, physical and physiological challenges. These are related to the fact that the occupant is no longer in control, has to put his or her life in the hands of a computer, while at the same time expects such future vehicles to render travel time more efficient or pleasurable and engage in so-called non-driving related tasks. Taking inspiration from work conducted in the field of aircraft passenger comfort experience, we discuss major comfort factors in the context of SAV and highlight both similarities and differences between transport modes. We present a human centered design framework to assist both the research agenda and the development of safe, usable, comfortable, and desirable future mobility solutions
Focusing and Compression of Ultrashort Pulses through Scattering Media
Light scattering in inhomogeneous media induces wavefront distortions which
pose an inherent limitation in many optical applications. Examples range from
microscopy and nanosurgery to astronomy. In recent years, ongoing efforts have
made the correction of spatial distortions possible by wavefront shaping
techniques. However, when ultrashort pulses are employed scattering induces
temporal distortions which hinder their use in nonlinear processes such as in
multiphoton microscopy and quantum control experiments. Here we show that
correction of both spatial and temporal distortions can be attained by
manipulating only the spatial degrees of freedom of the incident wavefront.
Moreover, by optimizing a nonlinear signal the refocused pulse can be shorter
than the input pulse. We demonstrate focusing of 100fs pulses through a 1mm
thick brain tissue, and 1000-fold enhancement of a localized two-photon
fluorescence signal. Our results open up new possibilities for optical
manipulation and nonlinear imaging in scattering media
Spectral compression of single photons
Photons are critical to quantum technologies since they can be used for
virtually all quantum information tasks: in quantum metrology, as the
information carrier in photonic quantum computation, as a mediator in hybrid
systems, and to establish long distance networks. The physical characteristics
of photons in these applications differ drastically; spectral bandwidths span
12 orders of magnitude from 50 THz for quantum-optical coherence tomography to
50 Hz for certain quantum memories. Combining these technologies requires
coherent interfaces that reversibly map centre frequencies and bandwidths of
photons to avoid excessive loss. Here we demonstrate bandwidth compression of
single photons by a factor 40 and tunability over a range 70 times that
bandwidth via sum-frequency generation with chirped laser pulses. This
constitutes a time-to-frequency interface for light capable of converting
time-bin to colour entanglement and enables ultrafast timing measurements. It
is a step toward arbitrary waveform generation for single and entangled
photons.Comment: 6 pages (4 figures) + 6 pages (3 figures
- …
