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Abstract 

Nitrate leaching decreases crop available N and increases water contamination. Replacing fallow by cover crops (CC) 
is an alternative to reduce nitrate contamination, because it reduces overall drainage and soil mineral N accumulation. 
A study of the soil N and nitrate leaching was conducted during 5 years in a semi-arid irrigated agricultural área of 
Central Spain. Three treatments were studied during the intercropping period of maize {Zea mays L.): barley 
(Hordeum vulgare L.), vetch {Vicia villosa L.), and fallow. Cover crops, sown in October, were killed by glyphosate 
application in March, allowing direct seeding of maize in April. All treatments were irrigated and fertilised foliowing 
the same procedure. Soil water content was measured using capacity probes. Soil Nmin accumulation was determined 
along the soil profile before sowing and after harvesting maize. Soil analysis was conducted at six depths every 0.20 
m in each plot in samples from O to 1.2-m depth. 
The mechanistic water balance model WAVE [1] was applied in order to calcúlate drainage and plant growth of the 
different treatments, and apply them to the N balance. We evaluated the water balance of this model using the daily 
soil water content measurements of this field trial. A new Matlab versión of the model was evaluated as well. In this 
new versión improvements were made in the solute transport module and crop module. In addition, this new versión 
is more compatible with external modules for data processing, inverse calibration and uncertainty analysis than the 
previous Fortran versión. 
The model showed that drainage during the irrigated period was minimized in all treatments, because irrigation water 
was adjusted to crop needs, leading to nitrate accumulation on the upper layers after maize harvest. Then, during the 
intercrop period, most of the nitrate leaching occurred. Cover crops usually led to a shorter drainage period, lower 
drainage water amount and lower nitrate leaching than the treatment with fallow. These effects resulted in larger 
nitrate accumulation in the upper layers of the soil after CC treatments. 



1. Introduction 

Agriculture in irrigated semiarid áreas is often a source of groundwater contamination. Indeed the 
great yield potentials driven by extended frost-free periods and abundant solar radiation often results in 
large fertilization rates which are often unbalanced with the crop assimilation capacity [2]. A good 
example of such a problematic cultivation system is maize cropping in the Mediterranean área [3] [4]. 
Although adjustments of N applications to the maize crop requirements can reduce NO3" losses [5], 
fertilizer recovered by the maize plants is usually less than 50% [6], leaving a large residue of N^m in the 
soil after harvesting that it is prone to leaching. Introducing a cover crop (CC) during the intercrop period 
is one of the solutions proposed for reducing the residual N^m and henee N leaching [7]. 

Winter CCs have been developed principally in agricultural systems where the main crop is grown 
during the summer and the winters are relatively mild and not very dry, allowing a reasonable 
estabhshment. Winter CC also reduces soil erosión [8] and run off, it increases the water infiltration 
capacity [9], it enhances water retention capacity [10][11], it controls weed development [12][13], it 
suppresses diseases [14], it corrects saline soil [15], and it increases the organic matter and the soil 
fertility [16] [17] [18] [19]. However, CCs have been sometimes limited in dry regions because they can 
compete for water resources and nutrients if they are not killed at the correct time [20] [21] [22]. But in 
irrigated systems, such as maize cropping systems in the Mediterranean áreas, this competence can be 
avoided. 

Physically based numerical models for soil water movement are useful tools to quantify the different 
terms of the water and nutnent balances in agro-ecosystems [23]. However, the large number of 
parameters needs appropriate identification before such models can be used in predictive mode [24]. 
Inverse calibration can help to identify the parameters by an iterative process based, thereby using 
monitored variables under field conditions [25]. For the parameters driving the water balance, the 
availability of automated soil moisture probes allowing monitoring soil moisture with a high spatial and 
temporal resolution supports the adoption of inverse modehng schemes [26]. 

The main objective of this study was to evalúate the impact of CC in an irrigated maize system on the 
soil water and nutrient balance terms by means of the calibration of a process based soil water model. 

2. Materials and Methods 

2.1. Experimental setup 

The study was conducted on a monoculture of maize (Zea maize L., G-98 Pioneer) in an experimental 
field station located in Aranjuez (Madrid, Spain) in the Tajo river basin, from October 2006 to April 
2010. The soil was a Typic Calcixerept [27] (silty clay loam) and the site is characterized by a 
Mediterranean semi-arid chmate [28]. Temperature, humidity, wind speed, precipitation and solar 
radiation were recorded hourly with a Campbell Scientific CR23X micrologger (Logan, UT, USA) placed 
in the experimental field during the study period. 

Three treatments and four replications were randomly distributed in twelve plots ( 1 2 m x l 2 m ) . The 
treatments were a barley treatment {Hordeum vulgare L., cv. Vanessa), a vetch treatment {Vicia villosa 
L., cv. Vereda) and a fallow treatment (Fig.l). The CC was broadcast by hand and covered by a shallow 
cultivator after maize harvest and stubble removing on the foUowing dates: 5/10/2006, 11/10/2007, 
9/10/2008 and 5/10/2009. At the end of the winter they were killed with one apphcation of glyphosate. 



leaving the diy residues on the soil (22/3/2007, 24/3/2008, 11/3/2009 and 15/3/2010) and, three weeks 
later, maize was direct sown over the CC stubble. During the maize period the plots were fertilized with 
210kgNha"^ (ammonium nitrate). Irrigation was only applied during the maize session by a sprinkle 
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Fig. 1. Experimental setup (each plot was 12 x 12 m ) and distribution of the soil water content sensors and suction ceramic cups. 

210 kg N ha"̂  (ammonium nitrate). Irrigation was only apphed during the maize session by a sprinkle 
irrigation system (12 m x 12 m, 9.5 mm h"̂ ) and was adjusted to the evapotranspiration obtained by the 
FAO method [29], thereby avoiding drainage during these periods. A more detailed description of the 
experimental site and design can be found in Gabriel and Quemada [30]. 

2.2. Direct measurements 

EnviroSCAN" capacitance probes (Sentek Pty Ltd, Stepney, Australia) were used for the daily 
monitoring of soil water content. Nine probes were installed at three rephcations for each treatment. Each 
probé consisted of seven sensors placed every 20 cm from 10 to 130 cm depth. Every sensor was 
calibrated [31] and readings were registered every hour. Three ceramic suction cups were installed at 120 
cm depth in all the plots in order to analyze soil solution, and were sampled every 15 days. Maize and CC 
LAI measurements were taken along the study period in order to characterize soil coverage, by direct 
measurement of the leaf surface in maize and with digital images in the CC. Root depth was estimated for 
each crop from the hourly capacitance sensors data set, based on the differences in soil water content 
between day and night that were presumably due to plant water uptake. Soil cores were sampled in a 
trench cióse to the field experiment in order to measure bulk density, saturated hydraulic conductivity and 
estímate soil water retention curve parameters. With measured data, probability distribution functions 
were defined in order to use them for the inverse calibratíon of the model. A more detailed description of 
the direct measurements can be found in Gabriel et al. [32]. 



2.3. WAVEmodel 

In order to obtain an estimation of the water balance, the soil water module of the WAVE model [1] 
was inverted using data from the first fallow period (October 2006-April 2007), thereby comparing 
observed and simulated soil water content at different depths. The soil water modules solve the Richards 
equation parameterized with a conceptual model for the soil hydraulic properties [33]. The optimized 
parameters were soil water content at saturation, residual soil water content, hydrauhc conductivity and 
the van Genuchten constants n and a, obtaimng one valué for each parameter and each of the four 
homogeneous layers (0-20, 20-40, 40-80 and 80-120 cm depth). Subsequently, the plant parameters were 
calibrated for each CC and for maize, with data from each treatment from October 2006 to April 2007 for 
the CC and with data from April 2007 to October 2007 for the maize, keeping the soil hydraulic 
parameters fixed to the previously calibrated valúes. The parameters adjusted for each crop were i) the 
date when root reached their máximum inactivity after killing; ii) the maximal root water uptake from 
each compartment (one for each homogeneous layer); and iii) the four critical pressure heads describing 
the absorption of water by the plant. Valúes of LAl, crop coefficient and root depth were based on direct 
measurements. After that, the model was run for the rest of the experimental period in order to do a 
validation and to obtain the different terms of the water balance. Nitrate leaching was estimated by 
multiplying drainage volume obtained with WAVE with the nitrate concentration obtained in the suction 
cups. A more detailed description of the WAVE application can be found in Gabriel et al. [32]. 

A new Matlab® (The MathWorks Inc., Natick, MA, USA) versión of the WAVE model has also been 
implemented. This versión introduces a generic crop growth module where the growth can be estimated, 
together with its nitrogen content. The module present a continuous interaction between chmate, 
photosynthesis and plant development stage, based on the Acock formula [34]. Chmate time step 
becomes hourly instead of daily and senescence phenology and partitioning can be simulated now. 
Moreover, in the water balance module, the potential evapotranspiration is now calculated by application 
of the FAO estimation [29], instead of being introduced as a chmatic input, and there are more boundary 
condition options. A more detailed description of the Matlab® WAVE versión can be found in Van Loon 
etal. [35]. 

3. Results 

The distribution and amount of rainfall and the winter temperatures varied greatly between years, 
affecting to soil water content and CC growth. The nitrogen uptake by the CC was 157, 39, 39 and 77 kg 
N ha"̂  for barley and 179, 20, 56 and 55 kg N ha"̂  for vetch during the studied periods [30]. The three 
replications for each capacitance access probé gave results consistent between them. However, some 
diíferences in the range maximum-minimum valué measured were obtained because local effect of soil 
cracks and large stones [31], principally in the 0-20 and 40-80 cm depth. 

The Fortran WAVE model calibration in the fallow treatment for soil water content resulted in a Nash-
Sutcliffe efficiency coefficient (Ceff) of 0.896 and a root mean squared error (RMSE) of 6.78 mm along 
the entire profile (Fig. 2). Inverse calibrated parameters (Table 1) were inside the range of data observed 
in the field [32]. The calibration for the CC resulted in a Ceff of 0.841 for the vetch, 0.905 for the barley 
and 0.860 for the maize, and a RMSE equal to 10.9, 9.0 and 9.5 mm respectively. During the vahdation 
periods, modeling error was lower but very cióse to the error obtained during the calibration period with 
Ceff valúes of 0.846, 0.826, 0.844 and 0.799 (for fallow, vetch, barley and maize respectively) and RMSE 
from 7.1 mm in the maize to 11.2 mm in the vetch respectively. 



Table 1. The optimized valúes of soil hydraulic parameters for both WAVE models and of cover crop root parameters. 0, was the 
residual water content, 9s the saturated water content, a the inverse of the air entry valué, n: curve shape parameter of the water 
retention model described by Van Genuchten [33], Smax the máximum root water uptake by each crop and ho, hi, h2 and hs the 
critical-matrix pressure heads defming reduction in water uptake of each crop. 
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Fig. 2. The soil water content simulated using WAVE models (Fortran and Matlab versions) versus the máximum, mínimum and 
average soil water content observed in the fallow plots using the triplicated capacitance sensors at different depths during the 
2006/07 period. 



Terms of the water balance are given in Fig. 3. There were large differenees during CC periods, 
mainly because of the weather conditions, but also because of the treatments. Direct evaporation from the 
soil varied from 51 to 101 mm in the fallow treatment, from 35 to 79 mm in the vetch treatment and from 
31 to 65 mm in the barley treatment. On the other hand, transpiration varied from 31 to 108 mm in the 
vetch treatment and between 41 and 117 mm in the barley treatment, adjusting to the variation observed 
in the biomass between years and treatments. As a result, the drainage water below 120 cm depth varied 
from O to 314.7 mm in the fallow treatment, between O and 301.3 mm in the vetch treatment and between 
O and 233.7 in the barley treatment. The reduction was in agreement with results observed by Thorup-
Kristensen et al. [36]. During the maize periods there were no differenees between treatments in 
evaporation or transpiration, but differenees in soil water contení at sowing time generated differenees in 
drainage (146 mm during the three maize periods in the fallow treatment, 123 mm in the vetch treatment 
and 86 mm in the barley treatment). 
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Fig. 3. The water balance simulated using WAVE model for the fallow, vetch and barley treatments during no- maize periods. 



Nitrate concentration in drainage was higher in the fallow and vetch treatments than in the barley 
treatment during almost all the study period, but with a broad range of variation from O to 135 mg N-NO3" 
L"̂  and usually below 60 mg N-NO3" L'\ Multiplying drainage rates with the observed nitrate 
concentrations yield the nitrate leaching. This resulted in 346 kg N-NO3" ha"̂  in the fallow treatment 
during all the study period, 245 kg N-NO3" ha"̂  in the vetch treatment and only 129 kg N-NO3" ha"̂  in the 
barley treatment. These results are consistent with similar studies in more humid regions [7] [37]. 

Results of the implementation of the new Matlab® versión of WAVE for the fallow plot are given (Fig. 
2). This versión of the model presents some small differences in the water balance, mainly because of the 
change in the way how ET is implemented in the Matlab versión. In this latter versión, ETQ is not 
provided as input. ET is directly calculated from energy balance considerations in the soil-crop 
continuum, needing solar radiation and relative humidity as input. We observe a small increase of 
accuracy of this new Matlab versión (Ceff equal to 0.933 and RMSE equal to 5.4 mm for the calibration 
period and Ceff equal to 0.893 and RMSE equal to 8.9 mm considering the four fallow periods together). 
Moreover, this new versión can easier be hnked to the advanced data analysis tools available in Matlab, 
in particularly inverse modeling, sensitivity analysis and uncertainty propagation tools such as SCEM-UA 
[38]. The implementation of the new crop module is prone to increase the opportunities of application of 
the model, not only for water and nitrogen balance studies, but also for evaluating crop response 
processes. Other enhancements of this versión is the possibility of running the model during more than a 
year and including rotations with more than one plant species. 

4. Conclusions 

The physically based agrohydrological model WAVE was successfully implemented for evaluating the 
impact of cover crops on the water balance and nutrient leaching in irrigated maize cropping systems. 
Both the Fortran versión as well as a newly developed Matlab versión of the model was implemented. 
The latter allows easy data analysis and facilitates advanced modeling analysis (inverse modeling, 
sensitivity analysis, uncertainty propagation analysis). Inverse modehng with both versions successfully 
allowed reconstructing measured soil water-content measurements in experimental triáis. This good 
calibration allowed an appropriate quantification of the water balance terms. In combination with 
observed nitrate concentrations in the suction cups, a rehable quantification of the NO3" leaching could be 
made. 

In this irrigated maize system, the CC was able to reduce NO3" leaching. Cover crops reduced both the 
drainage periods and the amount of water drained during those periods. In addition, in the barley 
treatment, the soil solution NO3" concentration was lower than in the fallow or vetch treatment. 

Cover crops effectiveness in reducing NO3" leaching largely depended on weather conditions. In the 
Mediterranean regions, the amount and precipitation timing are often very uncertain. Further research will 
address these issues with the new Matlab versión of the model. 
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