191 research outputs found

    A robust interface method for drop formation and breakup simulation at high density ratio using an extrapolated liquid velocity

    Get PDF
    AbstractA two-phase flow formulation for atomisation modelling is presented, with a Coupled Level Set/Volume Of Fluid (CLSVOF) technique adopted for interface-tracking. In order to achieve stable numerical solution at high density ratios, an extrapolated liquid velocity field is constructed and used in discretisation of the momentum equations. Solution accuracy is also improved when this field is also used in the scalar (VOF and Level Set) advection equations. A divergence-free algorithm is proposed to ensure satisfaction of the continuity condition for the extrapolated liquid velocity. The density and viscosity across the interface are treated sharply as a function of the Level Set to maintain the physical discontinuity. The developed method is shown to accurately predict drop formation in low Re liquid jets and the deformation and breakup morphology of a single droplet in uniform air flow at different Weber numbers (from 3.4 to 96). The mechanism for droplet breakup is determined based on an analysis of the simulation results. The computed Rayleigh–Taylor instability wavelength extracted from the acceleration of the simulated liquid droplet agrees well with experimental measurements and theoretical analysis, confirming that Rayleigh–Taylor instability dominates single drop breakup in the Weber number range studied. Finally, the influence of liquid viscosity on droplet breakup is numerically investigated; the critical Weber number separating deformation and breakup regimes is well predicted at different Ohnesorge numbers in comparison with the experimental data

    The Application of the Conjugate Gradient Method to the Solution of Transient Electromagnetic Scattering from Thin Wires

    Get PDF
    Previous approaches to the problem of computing scattering by conducting bodies have utilized the well-known marching-on-in-time solution procedures. However, these procedures are very dependent on discretization techniques and sometimes lead to instabilities as the time progresses. Moreover, the accuracy of the solution cannot be verified easily, and usually there is no error estimation. In this paper we describe the conjugate gradient method for solving transient problems. For this method, the time and space discretizations are independent of one another. The method has the advantage of a direct method as the solution is obtained in a finite number of steps and also of an iterative method since the roundoff and truncation errors are limited only to the last stage of iteration. The conjugate gradient method converges for any initial guess; however, a good initial guess may significantly reduce the computation time. Also, explicit error formulas are given for the rate of convergence of this method. Hence any problem may be solved to a prespecified degree of accuracy. The procedure is stable with respect to roundoff and truncation errors and simple to apply. As an example, we apply the method of conjugate gradient to the problem of scattering from a thin conducting wire illuminated by a Gaussian pulse. The results compare well with the marching-on-in-time procedure

    Automatic recognition of retinal diseases using mathematical models of image processing, based on multilayer-dictionary learning

    Get PDF
    Background and Objective:Image processing is one of the most important issues in the field of artificial intelligence, which is used in various industrial, medical, military, and security systems. One of the most important applications of image processing is the extraction of different types of classification in the field of medical sciences. By using powerful algorithms in this field, intelligent systems can be invented that automatically understand and interpret the medical characteristics of individuals without the need to the physician supervision can discover useful information to help experts make good judgments. When the necessary parameters for the diagnosis of the disease increase, the diagnosis and prognosis of the disease becomes very difficult even for an expert, which is why computer diagnostic tools have been used in recent decades to help the physicians. This has led to a reduction in possible errors due to fatigue or inexperience of the specialist, and to provide the required medical data to the physician in less time and with more detail and accuracy. The purpose of this study is to improve the classification of new methods using a multi-layered model to address retinal diseases diagnosis. Methods: This paper presents a multi-layer dictionary learning method for classification tasks.  Our multi-layer framework uses a label consistent in K-SVD algorithm to learn a discriminative dictionary for sparse coding in order to learn better features in retinal optical coherence tomography images. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discrimination in sparse codes during dictionary learning process. In fact, it relies on a succession of sparse coding and pooling steps in order to find an effective representation of data for classification. Moreover, we apply Duke dataset for validating our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from 45 subjects 15 normal subjects, 15 AMD patients, and 15 DME patients. Findings: Our classifier leads to a correct classification rate of 95.85% and 100.00% for normal and abnormal (DME and AMD). Experimental results demonstrate that our algorithm outperforms compared to many recent proposed supervised dictionary learning and sparse representation techniques. Conlusion: The results of this study were to provide an automatic system for the diagnosis of some retinal abnormalities in a way that it could do data analysis with high accuracy in comparison to other modern methods to diagnosis delicate patterns of OCT, separate images of normal and patient the normal and in two age-related macular degeneration diseases (AMD), and diabetic macular degeneration (DME), and help the physician to diagnose retinal pathology with great care. As a suggestion for professionals and future research, by generalizing this method to the more classes, we can cover the entire retinal myopia and use it as a potentially effective tool in computerized diagnosis and screening for retinal disease or in the wider eye area.   ===================================================================================== COPYRIGHTS  Š2019 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.  ====================================================================================

    Preparation of Biopolymer Based on Agar Extracted from Persian Gulf Red Algae Acanthophora and Evaluation of Its Properties

    Get PDF
    Introduction  Consumer demand for healthy food free of chemical preservatives and environmental concerns with plastic packaging environments are analyzed, which can be replaced by aquatic environments that can be contaminated, for the development of bio-based packaging materials. Natural polymers have the ability to be biodegradable due to the presence of oxygen or nitrogen atoms in their main polymer chain compared to the dominant carbon-carbon bonds in fossil-based polymers. Among the various biopolymers used to prepare multilayer films, polysaccharides are considered as the main components of the film due to their abundance and non-toxicity. These films generally have good mechanical strength, moderate physical properties, and most importantly, are edible and easily degradable. However, they are very brittle and hydrophilic, and these properties are undesirable in food packaging applications. Among polysaccharides, agar, commercially extracted from seaweed, is one of the most common and widely studied base materials. Agar is insoluble in cold water, but soluble in water at 90-100°C. When making an agar film, the solution and casting surface must be kept above the agarose gel setting temperature to avoid premature gelation. Compared to other biopolymers, agar is more stable at low pH and high temperature. This thermoplastic and biocompatible polysaccharide creates films with high mechanical strength, transparency and moderate barrier properties to carbon dioxide and oxygen, and most importantly, it is edible and easily biodegradable. Mixing agar with other polymers such as polyvinyl alcohol (PVA) and polyethylene improves the mechanical, thermal and biodegradability properties of bio composites. The main goal of this study is to make biofilms for use in packaging industries with agar polymer extracted from macroalgae species Acanthophora sp. Agar was extracted by sodium hydroxide/heating method and the film was prepared in combination with industrial polymer PVA and glycerol.   Materials and Methods  To make biofilms based on agar polymer, firstly, optimization of agar polymer extraction from macroalgae species Acanthophora sp. was done by sodium hydroxide/heating method, and in the next step, total phenolic compounds and the amount of soluble protein in extracted agar were measured. In the next step, glycerol with 30% by weight was used as a softener and PVA polymer with a weight ratio of 25% to the dry weight of agar powder was used to make bio composite by solvent casting method, in order to strengthen the mechanical and physical properties of bio composites. Characterization tests of the prepared composites included: XRD, FTIR and Tensile test. Laboratory tests include; The percentage of solubility in water and degree of swelling for all bio-composites were evaluated to determine the optimal physical properties of bio-films.   Results and Discussion: he results showed that; 15% extraction efficiency was obtained for sodium hydroxide/heating pretreatment method. The results of measuring the amount of total phenolic compounds in agar solution extracted by sodium hydroxide/heating method showed that the number of phenolic compounds in agar solution was 0.077 ¹ 0.004 in terms of mg of gallic acid/g of agar. The results of measuring the amount of protein in extracted agar determined by Bradford method showed that the agar solution contains 0.040 ¹ 0.019 mg/ml of protein. A decrease in the swelling rate and an increase in the water solubility of the agar bio composite occurred with the addition of glycerol and PVA polymer. The results of the tensile test showed that the addition of glycerol, a small hydrophilic molecule, to the agar bio composite leads to a decrease in the elastic modulus and an increase in flexibility. Adding PVA to agar/glycerol biofilm caused a decrease in the amount of elastic modulus and percentage of flexibility, which is the main factor of this phenomenon, the low values of elastic modulus and flexibility of PVA. Finally, the results confirm the use of these coatings for packing fruits and vegetables in tropical regions by increasing their shelf life for at least 5 days at 25°C

    The contribution of the Chirality-Induced Spin Selectivity (CISS) effect to the dispersion interaction between chiral molecules

    Full text link
    Dispersion interactions are one of the components of van der Waals forces, which play a key role in the understanding of intermolecular interactions in many physical, chemical and biological processes. The theory of dispersion forces was developed by London in the early years of quantum mechanics. However, it was only in the 1960s that it was recognized that for molecules lacking an inversion center such as chiral and helical molecules, there are chirality-sensitive corrections to the dispersion forces proportional to the rotatory power known from the theory of circular dichroism and with the same distance scaling law R-6 as the London energy. The discovery of the Chirality-Induced Spin Selectivity (CISS) effect in recent years has led to an additional twist in the study of chiral molecular systems, showing a close relation between spin and molecular geometry. Motivated by it, we propose in this investigation that there may exist additional contributions to the dispersion energy related to intermolecular, induced spin-orbit (ISOC) interactions. Within a second-order perturbative approach, these forces manifest as an effective intermolecular spin-spin exchange interaction. Although they are weaker than the standard London forces, the ISOC interactions turn out to be nevertheless not negligible and display the same R−6^{-6} distance scaling. Our results suggest that classical force field descriptions of van-der Waals interactions may require additional modifications to include the effects discussed here.Comment: 21 pages, 2 figure

    Reducing the environmental impacts of desalination reject brine using modified Solvay process based on calcium oxide

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record. : In this research, the influence of a variety of operational factors such as the temperature of the reaction, gas flow rate, concentration of NaCl, and the amount of Ca(OH)₂ for reducing the environmental impacts of desalination reject brine using the calcium oxide‐based modified Solvay process were investigated. For this purpose, response surface modeling (RSM) and central compo‐ site design (CCD) were applied. The significance of these factors and their interactions was assessed using an analysis of variance (ANOVA) technique with a 95% degree of certainty (p < 0.05). Optimal conditions for this process included: a temperature of 10 °C, a Ca(OH)₂/NaCl concentration ratio of 0.36, and a gas flow rate of 800 mL/min. Under these conditions, the maximum sodium removal efficiency from the synthetic sodium chloride solution was 53.51%. Subsequently, by employing the real brine rejected from the desalination unit with a 63 g/L salinity level under optimal conditions, the removal rate of sodium up to 43% was achieved. To investigate the process’s kinetics of Na elimination, three different kinds of kinetics models were applied from zero to second order. R squared values of 0.9101, 0.915, and 0.9141 were obtained in this investigation for zero‐, first‐, and second‐degree kinetic models, respectively, when synthetic reject saline reacted. In contrast, accord‐ ing to R squared’s results with utilizing real rejected brine, the results for the model of kinetics were: R squared = 0.9115, 0.9324, and 0.9532, correspondingly. As a result, the elimination of sodium from real reject brine is consistent with the second‐order kinetic model. According to the findings, the calcium oxide‐based modified Solvay method offers a great deal of promise for desalination of brine rejected from desalination units and reducing their environmental impacts. The primary benefit of this technology is producing a usable solid product (sodium bicarbonate) from sodium chloride in the brine solution

    Control of crystallinity of vinylene-linked two-dimensional conjugated polymers by rational monomer design

    Get PDF
    The interest in two-dimensional conjugated polymers (2D CPs) has increased significantly in recent years. In particular, vinylene-linked 2D CPs with fully in-plane sp2-carbon-conjugated structures, high thermal and chemical stability, have become the focus of attention. Although the Horner-Wadsworth-Emmons (HWE) reaction has been recently demonstrated in synthesizing vinylene-linked 2D CPs, it remains largely unexplored due to the challenge in synthesis. In this work, we reveal the control of crystallinity of 2D CPs during the solvothermal synthesis of 2D-poly(phenylene-quinoxaline-vinylene)s (2D-PPQVs) and 2D-poly(phenylene-vinylene)s through the HWE polycondensation. The employment of fluorinated phosphonates and rigid aldehyde building blocks is demonstrated as crucial factors in enhancing the crystallinity of the obtained 2D CPs. Density functional theory (DFT) calculations reveal the critical role of the fluorinated phosphonate in enhancing the reversibility of the (semi)reversible C−C single bond formation

    Modulation of LXR signaling altered the dynamic activity of human colon adenocarcinoma cancer stem cells in vitro

    Get PDF
    Background: The expansion and metastasis of colorectal cancers are closely associated with the dynamic growth of cancer stem cells (CSCs). This study aimed to explore the possible effect of LXR (a regulator of glycolysis and lipid hemostasis) in the tumorgenicity of human colorectal CD133 cells. Methods: Human HT-29 CD133+ cells were enriched by MACS and incubated with LXR agonist (T0901317) and antagonist (SR9243) for 72 h. Cell survival was evaluated using MTT assay and flow cytometric analysis of Annexin-V. The proliferation rate was measured by monitoring Ki-67 positive cells using IF imaging. The modulation of LXR was studied by monitoring the activity of all factors related to ABC transporters using real-time PCR assay and western blotting. Protein levels of metabolic enzymes such as PFKFB3, GSK3β, FASN, and SCD were also investigated upon treatment of CSCs with LXR modulators. The migration of CSCs was monitored after being exposed to LXR agonist using scratch and Transwell insert assays. The efflux capacity was measured using hypo-osmotic conditions. The intracellular content of reactive oxygen species was studied by DCFH-DA staining. Results: Data showed incubation of CSCs with T0901317 and SR9243 reduced the viability of CD133 cells in a dose-dependent manner compared to the control group. The activation of LXR up-regulated the expression and protein levels of ABC transporters (ABCA1, ABCG5, and ABCG8) compared to the non-treated cells (p < 0.05). Despite these effects, LXR activation suppressed the proliferation, clonogenicity, and migration of CD133 cells, and increased hypo-osmotic fragility (p < 0.05). We also showed that SR9243 inhibited the proliferation and clonogenicity of CD133 cells through down-regulating metabolic enzymes PFKFB3, GSK3β, FASN, and SCD as compared with the control cells (p < 0.05). Intracellular ROS levels were increased after the inhibition of LXR by SR9243 (p < 0.05). Calling attention, both T0901317 and SR9243 compounds induced apoptotic changes in cancer stem cells (p < 0.05). Conclusions: The regulation of LXR activity can be considered as a selective targeting of survival, metabolism, and migration in CSCs to control the tumorigenesis and metastasis in patients with advanced colorectal cancers

    Performance enhancement of specific adsorbents for hardness reduction of drinking water and groundwater

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record. One of the most advantageous methods for lowering water hardness is the use of low-cost adsorbents. In this research, the effectiveness of natural zeolite (clinoptilolite type), activated carbon, and activated alumina was evaluated. These adsorbents were sequentially modified by NaCl, HCl, and NaCl-HCL to improve their ability to adsorb. The contact time and the amount of adsorbent used in the adsorption process were investigated experimentally to determine their effects. The results indicated that the best contact time for hardness reduction was 90 min, and the best concentrations of adsorbents in drinking water for zeolite, activated carbon, and activated alumina were 40, 60, and 60 g/L, respectively. In addition, for groundwater, these figures were 60, 40, and 40 g/L, respectively. The greatest possible decreases in total hardness under the best conditions by natural zeolite, activated carbon, and activated alumina adsorbents were 93.07%, 30.76%, and 56.92%, respectively, for drinking water and 59.23%, 15.67 %, and 39.72% for groundwater. According to the results obtained from experiments, NaCl-modified zeolite, natural zeolite, and NaCl-HCl-modified activated carbon performed better in terms of parameter reduction. The equilibrium data were well fitted by the Langmuir isotherm model, whereas the kinetic data for the adsorption process were consistent with the pseudo-second-order model. The equilibrium study of the adsorption process by the Morris–Weber model revealed that both chemical and physical adsorption are involved.Bushehr Water & WasteWater Company (Iran
    • …
    corecore