223 research outputs found

    Changes in Poultry Handling Behavior and Poultry Mortality Reporting among Rural Cambodians in Areas Affected by HPAI/H5N1

    Get PDF
    BACKGROUND: Since 2004, 21 highly pathogenic avian influenza H5N1 outbreaks in domestic poultry and eight human cases have been confirmed in Cambodia. As a result, a large number of avian influenza education campaigns have been ongoing in provinces in which H5N1outbreaks have occurred in humans and/or domestic poultry. METHODOLOGY/PRINCIPAL FINDINGS: Data were collected from 1,252 adults >15 years old living in two southern provinces in Cambodia where H5N1 has been confirmed in domestic poultry and human populations using two cross-sectional surveys conducted in January 2006 and in November/December 2007. Poultry handling behaviors, poultry mortality occurrence and self-reported notification of suspect H5N1 poultry cases to animal health officials in these two surveys were evaluated. Our results demonstrate that although some at risk practices have declined since the first study, risky contact with poultry is still frequent. Improved rates of reporting poultry mortality were observed overall, but reporting to trained village animal health workers decreased by approximately 50%. CONCLUSIONS/SIGNIFICANCE: Although some improvements in human behavior have occurred, there are still areas--particularly with respect to the handling of poultry among children and the proper treatment of poultry and the surrounding household environment--that need to be addressed in public health campaigns. Though there were some differences in the sampling methods of the 2006 and 2007 surveys, our results illustrate the potential to induce considerable, potentially very relevant, behavioral changes over a short period of time

    Hazard Analysis of Critical Control Points Assessment as a Tool to Respond to Emerging Infectious Disease Outbreaks

    Get PDF
    Highly pathogenic avian influenza virus (HPAI) strain H5N1 has had direct and indirect economic impacts arising from direct mortality and control programmes in over 50 countries reporting poultry outbreaks. HPAI H5N1 is now reported as the most widespread and expensive zoonotic disease recorded and continues to pose a global health threat. The aim of this research was to assess the potential of utilising Hazard Analysis of Critical Control Points (HACCP) assessments in providing a framework for a rapid response to emerging infectious disease outbreaks. This novel approach applies a scientific process, widely used in food production systems, to assess risks related to a specific emerging health threat within a known zoonotic disease hotspot. We conducted a HACCP assessment for HPAI viruses within Vietnam’s domestic poultry trade and relate our findings to the existing literature. Our HACCP assessment identified poultry flock isolation, transportation, slaughter, preparation and consumption as critical control points for Vietnam’s domestic poultry trade. Introduction of the preventative measures highlighted through this HACCP evaluation would reduce the risks posed by HPAI viruses and pressure on the national economy. We conclude that this HACCP assessment provides compelling evidence for the future potential that HACCP analyses could play in initiating a rapid response to emerging infectious diseases

    Evaluation of Exposure to Arsenic in Residential Soil

    Get PDF
    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89–17.7 μg/L, respectively) and older participants (3.8, 1.9, 0.91–19.9 μg/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background

    Studies Needed to Address Public Health Challenges of the 2009 H1N1 Influenza Pandemic: Insights from Modeling

    Get PDF
    In light of the 2009 influenza pandemic and potential future pandemics, Maria Van Kerkhove and colleagues anticipate six public health challenges and the data needed to support sound public health decision making.The authors acknowledge support from the Bill & Melinda Gates Foundation (MDVK, CF, NMF); Royal Society (CF); Medical Research Council (MDVK, CF, PJW, NMF); EU FP7 programme (NMF); UK Health Protection Agency (PJW); US National Institutes of Health Models of Infectious Disease Agent Study program through cooperative agreement 1U54GM088588 (ML); NIH Director's Pioneer Award, DP1-OD000490-01 (DS); EU FP7 grant EMPERIE 223498 (DS); the Wellcome Trust (DS); 3R01TW008246-01S1 from Fogerty International Center and RAPIDD program from Fogerty International Center with the Science & Technology Directorate, Department of Homeland Security (SR); and the Institut de Veille Sanitaire Sanitaire funded by the French Ministry of Health (J-CD). The funders played no role in the decision to submit the article or in its preparation

    Global Mortality Estimates for the 2009 Influenza Pandemic from the GLaMOR Project: A Modeling Study

    Get PDF
    Background: Assessing the mortality impact of the 2009 influenza A H1N1 virus (H1N1pdm09) is essential for optimizing public health responses to future pandemics. The World Health Organization reported 18,631 laboratory-confirmed pandemic deaths, but the total pandemic mortality burden was substantially higher. We estimated the 2009 pandemic mortality burden through statistical modeling of mortality data from multiple countries. Methods and Findings: We obtained weekly virology and underlying cause-of-death mortality time series for 2005–2009 for 20 countries covering ,35% of the world population. We applied a multivariate linear regression model to estimate pandemic respiratory mortality in each collaborating country. We then used these results plus ten country indicators in a multiple imputation model to project the mortality burden in all world countries. Between 123,000 and 203,000 pandemic respiratory deaths were estimated globally for the last 9 mo of 2009. The majority (62%–85%) were attributed to persons under 65 y of age. We observed a striking regional heterogeneity, with almost 20-fold higher mortality in some countries in the Americas than in Europe. The model attributed 148,000–249,000 respiratory deaths to influenza in an average prepandemic season, with only 19% in persons ,65 y. Limitations include lack of representation of low-income countries among single-country estimates and an inability to study subsequent pandemic waves (2010–2012). Conclusions: We estimate that 2009 global pandemic respiratory mortality was ,10-fold higher than the World Health Organization’s laboratory-confirmed mortality count. Although the pandemic mortality estimate was similar in magnitude to that of seasonal influenza, a marked shift toward mortality among persons ,65 y of age occurred, so that many more life-years were lost. The burden varied greatly among countries, corroborating early reports of far greater pandemic severity in the Americas than in Australia, New Zealand, and Europe. A collaborative network to collect and analyze mortality and hospitalization surveillance data is needed to rapidly establish the severity of future pandemics

    How to think about informal proofs

    Get PDF
    This document is the Accepted Manuscript version of the following article: Brendan Larvor, ‘How to think about informal proofs’, Synthese, Vol. 187(2): 715-730, first published online 9 September 2011. The final publication is available at Springer via doi:10.1007/s11229-011-0007-5It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it accommodates the many mathematical proofs that include actions on objects other than propositions; (v) this conception of logic permits the articulation of project-sized tasks for the philosophy of mathematical practice, thereby supplying a partial characterisation of normal research in the fieldPeer reviewedFinal Accepted Versio

    Marburg hemorrhagic fever in Durba and Watsa, Democratic Republic of the Congo: clinical documentation, features of illness, and treatment

    Get PDF
    The objective of the present study was to describe day of onset and duration of symptoms of Marburg hemorrhagic fever (MHF), to summarize the treatments applied, and to assess the quality of clinical documentation. Surveillance and clinical records of 77 patients with MHF cases were reviewed. Initial symptoms included fever, headache, general pain, nausea, vomiting, and anorexia (median day of onset, day 1-2), followed by hemorrhagic manifestations (day 5-8+), and terminal symptoms included confusion, agitation, coma, anuria, and shock. Treatment in isolation wards was acceptable, but the quality of clinical documentation was unsatisfactory. Improved clinical documentation is necessary for a basic evaluation of supportive treatment

    Resilience management during large-scale epidemic outbreaks

    Get PDF
    Assessing and managing the impact of large-scale epidemics considering only the individual risk and severity of the disease is exceedingly difficult and could be extremely expensive. Economic consequences, infrastructure and service disruption, as well as the recovery speed, are just a few of the many dimensions along which to quantify the effect of an epidemic on society's fabric. Here, we extend the concept of resilience to characterize epidemics in structured populations, by defining the system-wide critical functionality that combines an individual’s risk of getting the disease (disease attack rate) and the disruption to the system’s functionality (human mobility deterioration). By studying both conceptual and data-driven models, we show that the integrated consideration of individual risks and societal disruptions under resilience assessment framework provides an insightful picture of how an epidemic might impact society. In particular, containment interventions intended for a straightforward reduction of the risk may have net negative impact on the system by slowing down the recovery of basic societal functions. The presented study operationalizes the resilience framework, providing a more nuanced and comprehensive approach for optimizing containment schemes and mitigation policies in the case of epidemic outbreaks

    A simple approach to measure transmissibility and forecast incidence

    Get PDF
    Outbreaks of novel pathogens such as SARS, pandemic influenza and Ebola require substantial investments in reactive interventions, with consequent implementation plans sometimes revised on a weekly basis. Therefore, short-term forecasts of incidence are often of high priority. In light of the recent Ebola epidemic in West Africa, a forecasting exercise was convened by a network of infectious disease modellers. The challenge was to forecast unseen “future” simulated data for four different scenarios at five different time points. In a similar method to that used during the recent Ebola epidemic, we estimated current levels of transmissibility, over variable time-windows chosen in an ad hoc way. Current estimated transmissibility was then used to forecast near-future incidence. We performed well within the challenge and often produced accurate forecasts. A retrospective analysis showed that our subjective method for deciding on the window of time with which to estimate transmissibility often resulted in the optimal choice. However, when near-future trends deviated substantially from exponential patterns, the accuracy of our forecasts was reduced. This exercise highlights the urgent need for infectious disease modellers to develop more robust descriptions of processes – other than the widespread depletion of susceptible individuals – that produce non-exponential patterns of incidence

    Three-dimensional Numerical Modeling and Computational Fluid Dynamics Simulations to Analyze and Improve Oxygen Availability in the AMC Bioartificial Liver

    Get PDF
    A numerical model to investigate fluid flow and oxygen (O(2)) transport and consumption in the AMC-Bioartificial Liver (AMC-BAL) was developed and applied to two representative micro models of the AMC-BAL with two different gas capillary patterns, each combined with two proposed hepatocyte distributions. Parameter studies were performed on each configuration to gain insight in fluid flow, shear stress distribution and oxygen availability in the AMC-BAL. We assessed the function of the internal oxygenator, the effect of changes in hepatocyte oxygen consumption parameters in time and the effect of the change from an experimental to a clinical setting. In addition, different methodologies were studied to improve cellular oxygen availability, i.e. external oxygenation of culture medium, culture medium flow rate, culture gas oxygen content (pO(2)) and the number of oxygenation capillaries. Standard operating conditions did not adequately provide all hepatocytes in the AMC-BAL with sufficient oxygen to maintain O(2) consumption at minimally 90% of maximal uptake rate. Cellular oxygen availability was optimized by increasing the number of gas capillaries and pO(2) of the oxygenation gas by a factor two. Pressure drop over the AMC-BAL and maximal shear stresses were low and not considered to be harmful. This information can be used to increase cellular efficiency and may ultimately lead to a more productive AMC-BAL
    corecore