980 research outputs found

    Systematic underreproduction of time is independent of judgment certainty

    Get PDF
    We recently proposed that systematic underreproduction of time is caused by a general judgment bias towards earlier responses, instead of reflecting a genuine misperception of temporal intervals. Here we tested whether this bias can be explained by the uncertainty associated with temporal judgments. We applied transcranial magnetic stimulation (TMS) to inhibit neuronal processes in the right posterior parietal cortex (PPC) and tested its effects on time discrimination and reproduction tasks. The results show increased certainty for discriminative time judgments after PPC inhibition. They suggest that the right PPC plays an inhibitory role for time perception, possibly by mediating the multisensory integration between temporal stimuli and other quantities. Importantly, this increased judgment certainty had no influence on the degree of temporal underreproduction. We conclude that the systematic underreproduction of time is not caused by uncertainty for temporal judgments

    Quantitative analysis of aortic Na[<sup>18</sup>F]F uptake in macrocalcifications and microcalcifications in PET/CT scans

    Get PDF
    Background: Currently, computed tomography (CT) is used for risk profiling of (asymptomatic) individuals by calculating coronary artery calcium scores. Although this score is a strong predictor of major adverse cardiovascular events, this method has limitations. Sodium [18F]fluoride (Na[18F]F) positron emission tomography (PET) has shown promise as an early marker for atherosclerotic progression. However, evidence on Na[18F]F as a marker for high-risk plaques is limited, particularly on its presentation in clinical PET/CT. Besides, the relationship between microcalcifications visualized by Na[18F]F PET and macrocalcifications detectable on CT is unknown. Purpose: To establish a match/mismatch score in the aorta between macrocalcified plaque content on CT and microcalcification Na[18F]F PET uptake. Methods: Na[18F]F-PET/CT scans acquired in our centre in 2019–2020 were retrospectively collected. The aorta of each low-dose CT was manually segmented. Background measurements were placed in the superior vena cava. The vertebrae were automatically segmented using an open-source convolutional neural network, dilated with 10 mm, and subtracted from the aortic mask. Per patient, calcium and Na[18F]F-hotspot masks were retrieved using an in-house developed algorithm. Three match/mismatch analyses were performed: a population analysis, a per slice analysis, and an overlap score. To generate a population image of calcium and Na[18F]F hotspot distribution, all aortic masks were aligned. Then, a heatmap of calcium HU and Na[18F]F-uptake on the surface was obtained by outward projection of HU and uptake values from the centerline. In each slice of the aortic wall of each patient, the calcium mass score and target-to-bloodpool ratios (TBR) were calculated within the calcium masks, in the aortic wall except the calcium masks, and in the aortic wall in slices without calcium. For the overlap score, three volumes were identified in the calcium and Na[18F]F masks: volume of PET (PET+/CT-), volume of CT (PET-/CT+), and overlapping volumes (PET+/CT+). A Spearman's correlation analysis with Bonferroni correction was performed on the population image, assessing the correlation between all HU and Na[18F]F vertex values. In the per slice analysis, a paired Wilcoxon signed-rank test was used to compare TBR values within each slice, while an ANOVA with post-hoc Kruskal–Wallis test was employed to compare TBR values between slices. p-values &lt; 0.05 were considered significant. Results: In total, 186 Na[18F]F-PET/CT scans were included. A moderate positive exponential correlation was observed between total aortic calcium mass and total aortic TBR (r = 0.68, p &lt; 0.001). A strong positive correlation (r = 0.77, p &lt; 0.0001) was observed between CT values and Na[18F]F values on the population image. Significantly higher TBR values were found outside calcium masks than inside calcium masks (p &lt; 0.0001). TBR values in slices where no calcium was present, were significantly lower compared with outside calcium and inside calcium (both p &lt; 0.0001). On average, only 3.7% of the mask volumes were overlapping. Conclusions: Na[18F]F-uptake in the aorta behaves similarly to macrocalcification detectable on CT. Na[18F]F-uptake values are also moderately correlated to calcium mass scores (match). Higher uptake values were found just outside macrocalcification masks instead of inside the macrocalcification masks (mismatch). Also, only a small percentage of the Na[18F]F-uptake volumes overlapped with the calcium volumes (mismatch).</p

    Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    Get PDF
    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a&lt;sup&gt;&amp;minus;1&lt;/sup&gt;, a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a&lt;sup&gt;&amp;minus;1&lt;/sup&gt;, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NO&lt;sub&gt;x&lt;/sub&gt; ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a&lt;sup&gt;&amp;minus;1&lt;/sup&gt;. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a&lt;sup&gt;&amp;minus;1&lt;/sup&gt;) and anthropogenic emissions (2 Tg a&lt;sup&gt;&amp;minus;1&lt;/sup&gt;). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow, suggesting a missing source in polluted air. Ubiquitous high measured concentrations in the free troposphere are not captured by the model, and based on present understanding are not consistent with concurrent measurements of PAN and NO&lt;sub&gt;x&lt;/sub&gt;: we find no compelling evidence for a widespread missing acetaldehyde source in the free troposphere. We estimate the current US source of ethanol and acetaldehyde (primary + secondary) at 1.3 Tg a&lt;sup&gt;&amp;minus;1&lt;/sup&gt; and 7.8 Tg a&lt;sup&gt;&amp;minus;1&lt;/sup&gt;, approximately 60{%} and 480% of the corresponding increases expected for a national transition from gasoline to ethanol fuel

    Initial evidence for the criterion-related and structural validity of the long versions of the direct and meta-perspectives of the Coach-Athlete Relationship Questionnaire

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Taylor & Francis.The aim of the present study was to develop and initially validate a longer version of the direct (Jowett & Ntoumanis, 2004) and meta-perspectives (Jowett, 2009a, 2009b) of the Coach-Athlete Relationship Questionnaire (CART-Q). In Study 1, instruments (e.g. questionnaires, scales, and inventories) that have been used to assess relationship quality in the broader psychological literature were examined and items potentially relevant to the coach-athlete relationship were identified. The content validity of the identified items was then assessed using expert panels. A final questionnaire was subsequently prepared and administered to 693 participants (310 coaches and 383 athletes). Confirmatory factor analysis was employed to assess the multidimensional nature of the questionnaire based on the 3Cs (i.e. closeness, commitment, and complementarity) model of the coach-athlete relationship. The findings indicated that the direct and meta-perspective items of the long versions of the CART-Q approached an adequate data fit. Moreover, evidence for the internal consistency and criterion validity of the new instruments was also obtained. In Study 2, the newly developed measure was administered to an independent sample of 251 individuals (145 athletes and 106 coaches). Further statistical support was gained for the factorial validity and reliability of the longer version of the CART-Q

    An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE

    Get PDF
    Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Measurements of OH and HO2 from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A). While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B), model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO2 using observed CH2O and H2O2 as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO2 to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) shows similar meteorological and chemical environments with the exception of peroxides; observations of H2O2 during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HOx budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH2O and H2O2; however when the model is constrained with observed CH2O, H2O2 predictions from a range of rainout parameterizations bracket its observations. A mechanism suitable to explain observed concentrations of CH2O is uncertain. Free tropospheric observations of acetaldehyde (CH3CHO) are 2–3 times larger than its predictions, though constraint of the model to those observations is sufficient to account for less than half of the deficit in predicted CH2O. The box model calculates gross O3 formation during spring to maximize from 1–4 km at 0.8 ppbv d−1, in agreement with estimates from TOPSE, and a gross production of 2–4 ppbv d−1 in the boundary layer and upper troposphere during summer. Use of the lower observed levels of HO2 in place of model predictions decreases the gross production by 25–50%. Net O3 production is near zero throughout the ARCTAS-A troposphere, and is 1–2 ppbv in the boundary layer and upper altitudes during ARCTAS-B

    A Review on the Value of Imaging in Differentiating between Large Vessel Vasculitis and Atherosclerosis

    Get PDF
    Imaging is becoming increasingly important for the diagnosis of large vessel vasculitis (LVV). Atherosclerosis may be difficult to distinguish from LVV on imaging as both are inflammatory conditions of the arterial wall. Differentiating atherosclerosis from LVV is important to enable optimal diagnosis, risk assessment, and tailored treatment at a patient level. This paper reviews the current evidence of ultrasound (US), 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET), computed tomography (CT), and magnetic resonance imaging (MRI) to distinguish LVV from atherosclerosis. In this review, we identified a total of eight studies comparing LVV patients to atherosclerosis patients using imaging-four US studies, two FDG-PET studies, and two CT studies. The included studies mostly applied different methodologies and outcome parameters to investigate vessel wall inflammation. This review reports the currently available evidence and provides recommendations on further methodological standardization methods and future directions for research

    ITPK1 is an InsP6/ADP phosphotransferase that controls phosphate signaling in Arabidopsis

    Get PDF
    In plants, phosphate (Pi) homeostasis is regulated by the interaction of PHR transcription factors with stand-alone SPX proteins, which act as sensors for inositol pyrophosphates. Here, we combined different methods to obtain a comprehensive picture of how inositol (pyro)phosphate metabolism is regulated by Pi and dependent on the inositol phosphate kinase ITPK1. We found that inositol pyrophosphates are more responsive to Pi than lower inositol phosphates, a response conserved across kingdoms. With CE-ESI-MS we could separate different InsP7 isomers in Arabidopsis and rice, and identify 4/6-InsP7 and a PP-InsP4 isomer hitherto not reported in plants. We found that the inositol pyrophosphates 1/3-InsP7, 5-InsP7 and InsP8 increase severalfold in shoots after Pi resupply and that tissue-specific accumulation of inositol pyrophosphates relies on ITPK1 activities and MRP5-dependent InsP6 compartmentalization. Notably, ITPK1 is critical for Pi-dependent 5-InsP7 and InsP8 synthesis in planta and its activity regulates Pi starvation responses in a PHR-dependent manner. Furthermore, we demonstrate that ITPK1-mediated conversion of InsP6 to 5-InsP7 requires high ATP concentrations and that Arabidopsis ITPK1 has an ADP phosphotransferase activity to dephosphorylate specifically 5-InsP7 under low ATP. Collectively, our study provides deeper insights into Pi-dependent changes in nutritional and energetic states with the synthesis of regulatory inositol pyrophosphates

    Lightest sterile neutrino abundance within the nuMSM

    Get PDF
    We determine the abundance of the lightest (dark matter) sterile neutrinos created in the Early Universe due to active-sterile neutrino transitions from the thermal plasma. Our starting point is the field-theoretic formula for the sterile neutrino production rate, derived in our previous work [JHEP 06(2006)053], which allows to systematically incorporate all relevant effects, and also to analyse various hadronic uncertainties. Our numerical results differ moderately from previous computations in the literature, and lead to an absolute upper bound on the mixing angles of the dark matter sterile neutrino. Comparing this bound with existing astrophysical X-ray constraints, we find that the Dodelson-Widrow scenario, which proposes sterile neutrinos generated by active-sterile neutrino transitions to be the sole source of dark matter, is only possible for sterile neutrino masses lighter than 3.5 keV (6 keV if all hadronic uncertainties are pushed in one direction and the most stringent X-ray bounds are relaxed by a factor of two). This upper bound may conflict with a lower bound from structure formation, but a definitive conclusion necessitates numerical simulations with the non-equilibrium momentum distribution function that we derive. If other production mechanisms are also operative, no upper bound on the sterile neutrino mass can be established.Comment: 34 pages. v2: clarifications and a reference added; published version. v3: erratum appende
    corecore