320 research outputs found

    Spin relaxation in nn-type ZnO quantum wells

    Full text link
    We perform an investigation on the spin relaxation for nn-type ZnO (0001) quantum wells by numerically solving the kinetic spin Bloch equations with all the relevant scattering explicitly included. We show the temperature and electron density dependence of the spin relaxation time under various conditions such as impurity density, well width, and external electric field. We find a peak in the temperature dependence of the spin relaxation time at low impurity density. This peak can survive even at 100 K, much higher than the prediction and measurement value in GaAs. There also exhibits a peak in the electron density dependence at low temperature. These two peaks originate from the nonmonotonic temperature and electron density dependence of the Coulomb scattering. The spin relaxation time can reach the order of nanosecond at low temperature and high impurity density.Comment: 6 pages, 4 figure

    Theory of laser-induced demagnetization at high temperatures

    Full text link
    Laser-induced demagnetization is theoretically studied by explicitly taking into account interactions among electrons, spins and lattice. Assuming that the demagnetization processes take place during the thermalization of the sub-systems, the temperature dynamics is given by the energy transfer between the thermalized interacting baths. These energy transfers are accounted for explicitly through electron-magnons and electron-phonons interaction, which govern the demagnetization time scale. By properly treating the spin system in a self-consistent random phase approximation, we derive magnetization dynamic equations for a broad range of temperature. The dependence of demagnetization on the temperature and pumping laser intensity is calculated in detail. In particular, we show several salient features for understanding magnetization dynamics near the Curie temperature. While the critical slowdown in dynamics occurs, we find that an external magnetic field can restore the fast dynamics. We discuss the implication of the fast dynamics in the application of heat assisted magnetic recording.Comment: 11 Pages, 7 Figure

    Spin relaxation due to random Rashba spin-orbit coupling in GaAs (110) quantum wells

    Full text link
    We investigate the spin relaxation due to the random Rashba spin-orbit coupling in symmetric GaAs (110) quantum wells from the fully microscopic kinetic spin Bloch equation approach. All relevant scatterings, such as the electron-impurity, electron--longitudinal-optical-phonon, electron--acoustic-phonon, as well as electron-electron Coulomb scatterings are explicitly included. It is shown that our calculation reproduces the experimental data by M\"uller {\em et al.} [Phys. Rev. Lett. {\bf 101}, 206601 (2008)] for a reasonable choice of parameter values. We also predict that the temperature dependence of spin relaxation time presents a peak in the case with low impurity density, which originates from the electron-electron Coulomb scattering.Comment: 5 pages, 2 figures, EPL in pres

    Current induced local spin polarization due to the spin-orbit coupling in a two dimensional narrow strip

    Full text link
    The current induced local spin polarization due to weak Rashba spin-orbit coupling in narrow strip is studied. In the presence of longitudinal charge current, local spin polarizations appear in the sample. The spin polarization perpendicular to the plane has opposite sign near the two edges. The in-plane spin polarization in the direction perpendicular to the sample edges also appears, but does not change sign across the sample. From our scaling analysis based on increasing the strip width, the out-of-plane spin polarization is important mainly in a system of mesoscopic size, and thus appears not to be associated with the spin-Hall effect in bulk samples.Comment: 4 pages, 4 figure

    Crossover to the Anomalous Quantum Regime in the Extrinsic Spin Hall Effect of Graphene

    Get PDF
    Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect

    Electron spin relaxation in graphene with random Rashba field: Comparison of D'yakonov-Perel' and Elliott-Yafet--like mechanisms

    Full text link
    Aiming to understand the main spin relaxation mechanism in graphene, we investigate the spin relaxation with random Rashba field induced by both adatoms and substrate, by means of the kinetic spin Bloch equation approach. The charged adatoms on one hand enhance the Rashba spin-orbit coupling locally and on the other hand serve as Coulomb potential scatterers. Both effects contribute to spin relaxation limited by the D'yakonov-Perel' mechanism. In addition, the random Rashba field also causes spin relaxation by spin-flip scattering, manifesting itself as an Elliott-Yafet--like mechanism. Both mechanisms are sensitive to the correlation length of the random Rashba field, which may be affected by the environmental parameters such as electron density and temperature. By fitting and comparing the experiments from the Groningen group [J\'ozsa {\it et al.}, Phys. Rev. B {\bf 80}, 241403(R) (2009)] and Riverside group [Pi {\it et al.}, Phys. Rev. Lett. {\bf 104}, 187201 (2010); Han and Kawakami, {\it ibid.} {\bf 107}, 047207 (2011)] which show either D'yakonov-Perel'-- (with the spin relaxation rate being inversely proportional to the momentum scattering rate) or Elliott-Yafet--like (with the spin relaxation rate being proportional to the momentum scattering rate) properties, we suggest that the D'yakonov-Perel' mechanism dominates the spin relaxation in graphene. The latest experimental finding of a nonmonotonic dependence of spin relaxation time on diffusion coefficient by Jo {\it et al.} [Phys. Rev. B {\bf 84}, 075453 (2011)] is also well reproduced by our model.Comment: 13 pages, 9 figures, to be published in New J. Phy

    Spin Orientation of Holes in Quantum Wells

    Full text link
    This paper reviews the spin orientation of spin-3/2 holes in quantum wells. We discuss the Zeeman and Rashba spin splitting in hole systems that are qualitatively different from their counterparts in electron systems. We show how a systematic understanding of the unusual spin-dependent phenomena in hole systems can be gained using a multipole expansion of the spin density matrix. As an example we discuss spin precession in hole systems that can give rise to an alternating spin polarization. Finally, we discuss the qualitatively different regimes of hole spin polarization decay in clean and dirty samples.Comment: 14 pages, 8 figure

    Non-Markovian spin relaxation in two-dimensional electron gas

    Full text link
    We analyze by Monte-Carlo simulations and analytically spin dynamics of two-dimensional electron gas (2DEG) interacting with short-range scatterers in nonquantizing magnetic fields. It is shown that the spin dynamics is non-Markovian with the exponential spin relaxation followed by the oscillating tail due to the electrons residing on the closed trajectories. The tail relaxes on a long time scale due to an additional smooth random potential and inelastic processes. The developed analytical theory and Monte-Carlo simulations are in the quantitative agreement with each other.Comment: 6 pages, 3 figure

    Oblique surface waves at an interface of metal-dielectric superlattice and isotropic dielectric

    Full text link
    We investigate the existence and the dispersion characteristics of surface waves that propagate at an interface between metal-dielectric superlattice and isotropic dielectric. Within the long wavelength limit, when the effective-medium approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into the contact with semi-infinite dielectric, a new type of surface modes can appear. The propagation of such modes obliquely to the optical axes occurs under favorable conditions that regard thicknesses of the layers, as well as the proper choice of dielectric permittivity of the constituent materials. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to the field non-locality and consequently to the failure of the effective-medium approximation.Comment: 4 pages, 3 figure

    Nucleon-nucleon potential in finite nuclei

    Get PDF
    We consider the spin-isospin-independent central part of the residual nucleon-nucleon potential in finite spherical nuclei taking into account the deformation effects of the nucleons within the surrounding nuclear environment. It is shown that inside the nucleus the short-range repulsive contribution of the potential is increased and the intermediate attraction is decreased. We identify the growth of the radial component of the spin-isospin independent short-range part of the in-medium nucleon-nucleon interaction as the responsible agent that prevents the radial collapse of the nucleus.Comment: 9 pages, 3 eps figure
    corecore