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5Institute of Nuclear Physics, Academy of Sciences, Uzbekistan

(Received 6 December 2004; published 31 March 2005)

We consider the spin-isospin–independent central part of the residual nucleon-nucleon potential in finite
spherical nuclei taking into account the deformation effects of the nucleons within the surrounding nuclear
environment. It is shown that inside the nucleus the short-range repulsive contribution of the potential is increased
and the intermediate-range attraction is decreased. We identify the growth of the radial component of the
spin-isospin–independent short-range part of the in-medium nucleon-nucleon interaction as the responsible
agent that prevents the radial collapse of the nucleus.
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I. INTRODUCTION

Nearly 20 years ago, in their pioneering work [1], Jackson,
Jackson, and Pasquier investigated the skyrmion-skyrmion
interaction by considering simple deformations of the chiral
field. This idea was further developed in Refs. [2–4] into
various versions of Skyrme-like models allowing for more
complicated deformations. It was shown that the central
potential of the original Skyrme model is reduced by an amount
of about 10–20% if deformation effects of the skyrmion are
taken into account. In the ω-stabilized Skyrme model the
deformation effect is even more significant, as the central
repulsion at R = 1 fm acquires a reduction of about 40%.

Nowadays, in-medium properties of the nucleon are of high
relevance. In particular, the properties of a single nucleon
embedded in various finite nuclei have been considered in
a medium-modified version of the Skyrme model [5,6]. It
has been shown that bound nucleons acquire an intrinsic
quadrupole moment because of the in-medium deformation
effects. In summary, the general behavior of the properties of
the nucleons are in qualitative agreement with experimental
observations (e.g., the swelling of the nucleon in the nuclear
medium and the decrease of its mass). Similar results have
also been obtained in the infinite-nuclear-matter approach of
Ref. [7].

Thus, it is natural to investigate the nucleon-nucleon (NN )
interactions in the nuclear medium because of their role in the
formation of nuclear matter. There are two known paths to
nuclear matter aspects of the Skyrme model. The first one is
based on studies of the crystalline ground state of the skyrmion
matter [8–16], whereas the second one is related to studies of
the Skyrme model on the hypersphere [17–23]. Especially in
the first approach, the tensor part of the potential is found to be
responsible for the crystalline structure of the ground state. In
contrast to this, quantum hadrodynamics studies [24] assert the
important role of the spin-isospin independent scalar part of the
NN interactions in the formation of the nuclear matter. In any

case, one can expect that the surrounding nuclear environment
will leave its mark on the in-medium NN potential.

The temperature and density dependence of the nucleon-
nucleon interactions, the hadron properties and the meson-
nucleon coupling constants of the one-boson-exchange
potential have been studied in the framework of thermofield
dynamics (TFD) in Refs. [25–29]. In particular, it has been
shown that the potential well of the NN interaction becomes
shallow as the temperature or the density increases [25]. The
changes in the meson-nucleon couplings and hadron properties
also indicate the influence of the medium on the one-boson-
exchange potential [28,29]. Note, however, that the Skyrme
model and its variants are the only type of models that use
hadronic degrees of freedom and that allow for a simultaneous
description of both single-baryon and multibaryon proper-
ties. In fact, as discussed in Ref. [5], Skyrme-type models
even allow for a simple inclusion of nuclear background
terms.

The alterations of the tensor part of the NN potential
for infinite nuclear matter have already been studied in the
framework of the in-medium modified Skyrme model in
Ref. [7]. In the present article, we rather concentrate on the
spin-isospin–independent part of the NN potential in finite
nuclei where we allow the chiral fields of the two involved
nucleons to deform in response to the surrounding nuclear
environment.

II. THE MODEL

Unfortunately, the NN potential of the original Skyrme
model does not have a central attraction at intermediate
distances. It has been shown, however, that this long-standing
problem can be solved, for example, by the incorporation of
the iterated two-pion exchange [30,31] into the Skyrme model
or by a reformulation [32] of the original Skyrme Lagrangian
on the basis of scale invariance and the conformal anomaly
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[33,34]. Such a scale-invariant Lagrangian was already applied
to describe nucleons in infinite nuclear matter [35,36] in the
mean-field approximation (MFA).

A. Lagrangian and baryon number one soliton

We start here with the model of Refs. [37] that proposes a
scale-invariant version of the in-medium Skyrme model given,
in the static case, by the following Lagrangian:

Lst(U, σ ) = −F 2
π

16
[χ2αp(�x)Tr( �∇�xU )( �∇�xU+) + 2( �∇�xχ )2]

+ 1

32e2
Tr

[
U+ ∂

∂xi

U,U+ ∂

∂xj

U

]2

−C∗
g

24

[
χ4 − 1 + 4

ε
(1 − χε)

]

−F 2
πm2

π

16
χ3αs(�x) Tr(2 − U − U+) . (1)

Here, U = exp{2i �τ · �π/Fπ } parametrizes the pseudoscalar
isotriplet of pion fields �π, �τ are the usual Pauli matrices,
χ = e−2σ/Fπ is given in terms of the scalar-isoscalar dila-
ton field σ, Fπ is the weak pion decay constant, e is the
parameter of the stabilizing Skyrme term, mπ is the pion
mass, ε = 16/29, and C∗

g is the gluon-condensate parameter.1

We associate the dilaton with a quarkonium state. Its mass
mσ ≈ 600 MeV is compatible with the well-known attraction
in the central NN potential [32]. The skyrmion is assumed to
be located at a position �Rk from the center of the nucleus, such
that the total spatial vector measured relative to the center of
the nucleus is given as �x = �Rk + �r , where �r is the distance
vector relative to the origin of the skyrmion.2 We have chosen
this model as a representative for a larger class of Skyrme-type
models that allow for a qualitative description of the central
attraction between two nucleons. It is not our aim to construct
a fine-tuned version that produces quantitative fits of the single
nucleon properties or the two-nucleon potentials. Rather, by
keeping the involved terms to the bare minimum for this case
(i.e., the nonlinear sigma-model kinetic term, the stabilizing
fourth-order derivative term, the symmetry-breaking pion
mass term, and the intermediate-attraction generating dilaton
term and couplings) this model should be general enough to
predict qualitatively those results which are generic and also
hold for more complicated Skyrme-type Lagrangians (e.g.,
with vector mesons and other hadronic fields).

The dependence on the nuclear density ρ(�x) is included in
the in-medium coefficients αs(�x) and αp(�x) as follows:

αp(�x) = 1 − 4πc0ρ(�x)/η

1 + g′
04πc0ρ(�x)/η

,

(2)
αs(�x) = 1 − 4πηb0ρ(�x)

/
m2

π .

1The asterisk indicates that the gluon condensate should be
considered as renormalized in the nuclear medium. Note that in
general ε = 8Nf /(11Nc − 2Nf ). Furthermore, we assume Fπ = Fσ .

2This corresponds to U = U (�x − �Rk) = U (�r) and χ = χ (�x −
�Rk) = χ (�r) in Eq. (1). See Ref. [5] for further details on the geometry

of a skyrmion (without dilaton) inside a finite nucleus.

Here η = 1 + mπ/mN ∼ 1.14 is a kinematical factor and
mN = 938 MeV is the mass of the nucleon. Moreover, b0 =
−0.024 m−1

π and c0 = 0.21 m−3
π are empirical parameters

that can be taken from the analyses of pionic atoms and
low-energy pion-nucleus scattering data, and g′

0 = 1/3 is the
Lorentz-Lorenz factor that takes into account the short-range
correlations [38].

Numerical calculations show that the ground state B = 1
solution of the Euler-Lagrange equations of (1) in free space
(ρ = 0, αs = αp = 1) is spherically symmetric. However,
when the soliton is embedded into a finite nucleus, it may alter
its shape, because the spherical symmetric configuration may
not correspond to a minimum in energy or mass any longer. In
this way it is possible to study the modification of the shape of
the in-medium skyrmion, namely by a minimization procedure
of its mass functional.

In deriving the mass functional of the single skyrmion
we follow the scheme presented in Ref. [5] by considering
an axially symmetric configuration for a single skyrmion
located at some distance from the center of a finite spherical
nucleus. This implies that the chiral profile function, which
parametrizes the modulus of the pion, is axially symmetric,
that is, F (�r) = F (r, θ ), whereas the pion direction is governed
by the polar-angle profile function (θ ):

�π (�r) = Fπ

2
F (r, θ ) �N [(θ ), ϕ],

�N = {sin (θ ) cos ϕ, sin (θ ) sin ϕ, cos (θ )} . (3)

We further assume that the dilaton field also has an axially
symmetric configuration, that is, σ (�r) = σ (r, θ ) and there-
fore χ (�r) = χ (r, θ ). For example, the mass functional for
a single skyrmion (B = 1) located at a distance Rk = | �Rk|
from the center of the nucleus, and with a spatial vector �rk

measured relative to the origin of the skyrmion,3 is given as
follows:

M(Rk) = 2π

∫ ∞

0
drk r2

k

∫ π

0
dθk sin θk

×
{

F 2
π

8
φ(F,; rk, θk)χ2αp [x(rk, θk; Rk)]

+ 1

2e2
ϕ(F,; rk, θk)

+ F 2
πm2

π

4
(1 − cos F ) χ3αs [x(rk, θk; Rk)]

+ C∗
g

24
ψ(χ ) + F 2

π

8

(
χ2

θk

rk
2

+ χ2
rk

)}
, (4)

φ(F,; rk, θk) = F 2
θk

rk
2

+ F 2
rk

+ sin2F

rk
2

(
sin2 

sin2 θk

+ 2
θk

)
,

3Note that here �r = �rk , where k labels the skyrmion. Thus �x = �rk +
�Rk and |�x| =

√
R2

k + r2
k + 2Rkrk cos θk = x(rk, θk; Rk), where rk and

θk are the modulus and polar angle of �rk .
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ϕ(F,; rk, θk) = sin2 F

r2
k

[(
sin2 

sin2 θk

+ 2
θk

)
F 2

rk

+ sin2 

sin2 θk

(
F 2

θk

r2
k

+ sin2 F

r2
k

2
θk

)]
,

ψ(χ ) =
[
χ4 − 1 + 4

ε
(1 − χε)

]
.

Here the subscripts of the functions Frk
, Fθk

,θk
, χrk

, and
χθk

denote the corresponding partial derivatives [e.g., χθk
≡

∂χ (rk, θk)/∂θk of the function χ ≡ χ (rk, θk)].
In Ref. [5] the minimization of the mass functional

equation [Eq. (4)] was performed without dilatons, that is,
σ (�rk) = 0, and the pertinent in-medium skyrmion proper-
ties were discussed. In particular, it was shown that the
medium effects cause a deformation of the nucleon inside
finite nuclei. We follow Ref. [5] in the minimization proce-
dure for the functional equation [Eq. (4)]. But in addition to
the following parametrizations of the chiral and polar-angle
profile functions [5]:

F = 2 arctan

{(
r2
S

r2
k

)
[1 + γ1 cos θk + γ2 cos2 θk + · · ·]

}
,

 = θk + δ1 sin 2θk + δ2 sin 4θk + δ3 sin 6θk + · · · , (5)

we also introduce the following parametrization of the dilaton
field:

χ = 1 − χd exp

{
−

(
r2
k

r2
d

)
(1 + η1 cos θk + η2 cos2 θk + · · ·)

}
.

(6)
Here rS, γi, δi, χd, rd , and ηi are variational parameters. As
a result of the minimization procedure one gets a set of
variational parameters corresponding to specified values of
the distance Rk and the other input parameters defined in
Secs. II C and III.

B. Two nucleons in a baryon-rich environment and the residual
N N interaction

We now turn to the system of two interacting in-medium
nucleons, for example, to the modification of NN potential
VNN inside nuclei. For simplicity, we consider only the residual
in-medium NN potential in the radial direction of the nucleus
(i.e., the axial symmetric case) such that the two nucleons are
subject to different densities. This should be contrasted with
the case where the in-medium NN interaction is considered
in the azimuthal direction, namely where both nucleons are at
the same distance from the center of the nucleus and therefore
subject to the same density. This is not a serious limitation
because the latter interaction ought to be subdominant to the
interaction in the radial direction, as the medium modifications
resulting from the changes in the profile functions are known
to be small, whereas the changes resulting from the density
dependence of the mass functionals are more pronounced [5].
The geometry of this axially symmetric case is presented in
Fig. 1.

Unfortunately, in any version of the Skyrme Lagrangian,
it is very difficult to derive the binding energies as well

as the form factors of even light nuclei directly from the
nucleon-nucleon potential VNN . For simplicity, in setting up
our formalism, we assume the following:

� Each nucleon is bound inside the finite nucleus by a
phenomenological averaged potential normally used in shell
models in MFA.

� The nucleon distribution (i.e., the nuclear density) is given
by a phenomenological formula.

It is believed that the sum of all two-body—as well as possible
three-body—interactions can be reexpressed as an effective
averaged potential, centered at the origin of the nucleus.
Because of the MFA ideology, every nucleon behaves as if it
“feels” only this effective potential (spherical-well potential,
oscillator, etc.). Yet residual interactions between the nucleons
may still exist. These interactions ought to be important for
the description of deformations and stabilities of the nuclei.

In the following we will study the residual part of the NN

interactions (in radial direction) embedded in the surrounding
nuclear environment. We assume that the primary two-nucleon
potential in free space is given by the Skyrme model, including
dilatons, as described by the Lagrangian [Eq. (1)] with density
ρ = 0 such that αp = αs = 1. We then “plug” a pair of
nucleons into a finite nucleus or, more exactly, we consider
them as part of the nucleus. The point is that each of the
nucleons can be deformed for the following two reasons,
which affect the in-medium potential as well: (1) the presence
of the other nucleon or, in other words, the presence of the
NN interaction and (2) the presence of the remaining A−2
nucleons or, in other words, the presence of medium effects in
the nucleus.

The first case was investigated in Refs. [4,39], where the
modifications of the nucleons and VNN properties in free space
were recorded under possible deformations of the nucleons
during their mutual approach. For that purpose the authors
introduced a couple of deformation parameters and obtained
a modified central potential V c

NN by minimizing it at each
internucleon distance R. The second case, namely the effects
of the nuclear medium, is the subject of this article. In principal,
we could have followed the procedure of Refs. [4,39], which
would be

� to introduce deformation parameters in Lagrangian [Eq. (1)]
using an axially symmetric ansatz,

� to construct V c
NN from the Lagrangian [Eq. (1)] in the

product approximation, and
� to determine the deformation parameters by minimizing

V c
NN at each R.

However, such a procedure would be unnecessarily com-
plicated, especially for the case of the Lagrangian [Eq. (1)]
with dilatons. Moreover, it that case one would have to
overcome complications resulting from double counting the
deformation effects caused by the NN interactions and by
medium modifications, respectively. Instead, for simplicity and
also for isolating the medium modifications from the vacuum
NN interaction effects, we minimize the mass functional
equation [Eq. (4)] for each of the two in-medium skyrmions
with respect to the corresponding deformation parameters,
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and then we insert these deformed skyrmion profiles into the
product ansatz to generate the NN central potential.

In this way, by inserting two skyrmions in the nuclear
background of the A−2 remaining nucleons, one can define a
static skyrmion-skyrmion residual potential as follows:

VSS

(
1
2 | �R1 + �R2|︸ ︷︷ ︸

≡D

, | �R2 − �R1|︸ ︷︷ ︸
≡R

)
= M[U (�x − �R1︸ ︷︷ ︸

≡�r1

)U (�x − �R2︸ ︷︷ ︸
≡�r2

), χ (�r1)χ (�r2); ρA−2(|�x|)]

− 2M free
B=1 − δV MF

B=2(D,R) . (7)

Here M[
∏2

i=1 U (�x − �Ri),
∏2

i=1 χ (�x − �Ri); ρA−2(|�x|)] is the
static mass functional of a skyrmion-product ansatz of
baryon number B = 2 with the skyrmions centered (axial-
symmetrically) at �Ri ≡ �OOi (with O and Oi as defined in
Fig. 1) in the renormalized background density ρA−2(|�x|).
Thus the potential [Eq. (7)] is defined in analogy with the
well-known product-ansatz prescription of the dilaton-free
case

UB=2(�x − �D, �R) = U (�x − �R1)U (�x − �R2) , (8)

where �D ≡ ( �R1 + �R2)/2 and �R ≡ �R2 − �R1. The remaining
quantity δV MF

B=2 denotes the contribution of the B = 2 system
to the mean-field potential. It is defined as follows:

δV MF
B=2 =

2∑
i=1

(
M[U (�ri), χ (�ri); ρA−2(|�x|)] − M free

B=1

)
. (9)

Note that the corresponding quantity δMS= − δV MF
B=1 can be

interpreted as the part of the energy of a skyrmion that is
transformed to the mean-field energy of pions inside the
nucleus and to the interaction energy of the skyrmion with
the background field. It is this background pionic field that
generates the attractive mean field potential binding nucleons
to the nucleus. Clearly the potential [Eq. (7)] becomes the free
NN potential when the background density of the remaining
nucleons goes to zero.4

Finally, inserting Eq. (9) into Eq. (7), one gets the following
form of the skyrmion-skyrmion residual potential:

VSS(D,R) = M[U (�r1)U (�r2), χ (�r1)χ (�r2); ρA−2(|�x|)]
− M[U (�r1), χ (�r1); ρA−2(|�x|)]
− M[U (�r2), χ (�r2); ρA−2(|�x|)] . (10)

From the comparison of Eqs. (7), (9), and (10) it should
become clear that the potential expressed in Eq. (10) is simply
the difference between the separation energy of a pair of
skyrmions (B = 2) inside the nucleus and the sum of the
separation energies of each individual skyrmion (B = 1) in
the same nucleus. This is well known in nuclear physics
as a major contribution to the residual NN potential in the
nuclear medium. Our aim is the evaluation of the spin-isospin
independent part of this potential.

4If the background field vanishes, ρA−2 → 0, the mean-field
contribution also vanishes, δV MF

B=2 → 0.

FIG. 1. The axially symmetric two-skyrmion system in a finite
spherical nucleus. Here O is the center of the nucleus, O′ is the
geometrical center of the two-skyrmion system, and O1 and O2 are
the centers of the first and second skyrmions, respectively. D is the
distance between the center of the nucleus and the one of the two-
skyrmion system, and R is the distance between skyrmions.

As mentioned already, we only consider the geometry when
the center of the (spherical) nucleus and centers of the two
skyrmions fall onto the same axis, which is denoted by z as
illustrated in Fig. 1. Then the VNN potential depends on only
two variables: (1) the distance between the centers of the two
skyrmions, R, and (2) the distance between the geometrical
center of the two-skyrmion system and the center of the
nucleus, D. The spatial vector �r is measured relative to the
two-skyrmion center such that here �x = �D + �r .

To isolate the spin-isospin independent part of the NN

potential one can use the standard projection procedure [40],
which corresponds to the following form in free space:

VNN (R,C) = V c
NN + 1

2 Tr(CσiC
+σj )

[
(3R̂iR̂j −δij )

×V T
NN (R) + δijV

στ
NN (R)

]
, (11)

where C = u0 + i �τ · �u (with �u2 + u2
0 = 1) is the relative

orientation matrix of the nucleons in internal space, σi , σj

are the Pauli matrixes, and R̂ is the unit vector along the
line joining the centers of the two nucleons. Here V c

NN, V T
NN ,

and V στ
NN are the central, tensor, and spin-spin parts of the

NN potential, respectively. Note that the central part of
the nucleon-nucleon interaction coincides with the one of
the skyrmion-skyrmion interaction.

Applying the above-described projection procedure and
using the skyrmion-skyrmion potential [Eq. (10)], we there-
fore predict the following expression for the spin-isospin–
independent part of the residual NN potential (in radial
direction) inside a finite spherical nucleus:

V
c,A
NN (D,R) = 2π

∫ ∞

0
dr r2

∫ π

0
dθ sin θ

{
V c

2 +V c
4 +V c

χSB +V c
σ

}
(12)

with

V c
2 = F 2

π

8
αp,A−2 [x(r, θ ; D)]

[
χ2

1 χ2
2 (φ1 + φ2)

− (
χ2

1 φ1 + χ2
2 φ2

)]
,

V c
4 = 1

3e2
(φ1φ2 − �),
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V c
χSB = m2

πF 2
π

4
αs,A−2 [x(r, θ ; D)]

[
χ3

1 χ3
2 (1−cos F1 cos F2)

− χ3
1 (1 − cos F1) − χ3

2 (1 − cos F2)
]
,

V c
σ = C∗

g,A−2

24
[ψ(χ1 · χ2) − ψ(χ1) − ψ(χ2)]

+ F 2
π

8

(
χ2

1 − 1
) (

χ2
2,θ2

r2
2

+ χ2
2,r2

)

+ F 2
π

8

(
χ2

2 − 1
) (

χ2
1,θ1

r2
1

+ χ2
1,r1

)

+ F 2
π

4
χ1χ2

[
sin(θ1−θ2)

(
χ1,r1

χ2,θ2

r2
− χ1,θ1

r1
χ2,r2

)

+ cos(θ1−θ2)

(
χ1,r1χ2,r2 + χ1,θ1χ2,θ2

r1r2

)]
,

� =
[

sin(θ1 − θ2)

(
F1,r1

F2,θ2

r2
− F1,θ1

r1
F2,r2

)

+ cos(θ1 − θ2)

(
F1,r1F2,r2 + F1,θ1F2,θ2

r1r2

)]2

+ sin2 F1

r2
1

[
cos(θ1 − θ2)

F2,θ2

r2

− sin(θ1 − θ2)F2,r2

]2
2

1,θ1

+ sin2 F2

r2
2

(
cos(θ1 − θ2)

F1,θ1

r1

+ sin(θ1 − θ2)F1,r1

)2
2

2,θ2

+ sin2 F1

r2
1

sin2 F2

r2
2

[
sin2 1

sin2 θ1

sin2 2

sin2 θ2

+ cos2(θ1 − θ2)2
1,θ1

2
2,θ2

]
.

Here Fi ≡ Fi(ri, θi), χi ≡ χi(ri, θi), and i ≡ i(θi) with
i = 1, 2 are the chiral, dilaton, and polar-angle profile
functions of skyrmion 1 or 2, respectively. The vari-
ables ri = ri(r, θ ; R) =

√
(R2/4) + r2 ± Rr cos θ, θi = θi(r,

θ ; R) = arcsin[sin θ r/ri(r, θ ; R)], r, θ and x = x(r, θ ; D) =√
D2 + r2 + 2Dr cos θ are illustrated in Fig. 1. Moreover,

we abbreviate the partial derivative of the above-specified
functions fi ∈ {Fi, χi,i} as fi,y ≡ ∂fi/∂y. The functions
φi are defined as φi ≡ φ(Fi,i ; ri, θi) with φ (and ψ) as in
Eq. (4).

C. Density dependence and input parameters

We shall use a phenomenological parametrization of the
density of a spherical nucleus as presented in Ref. [41] and
therefore write the renormalized density of the A − B nuclear
background environment as follows:

ρA−B(x) =
(

A − B

A

)
2

π3/2r3
0

[
1 + A − 2

3

(
x2

r2
0

)]

× exp

{
−x2

r2
0

}
if A < 20,

ρA−B(x) =
(

A − B

A

)
ρ0

1 + exp{(x − R′)/a}
if A � 40,

where r0 = 1.635 fm for 12C. Furthermore, a = 0.58 fm,
R′ = 1.2A1/3 fm, and ρ0 = 0.5m3

π is the normal nuclear matter
density.

The input parameters of the skyrmion sector are chosen
as Fπ = 186 MeV and e = 2π . Although this standard set
of input parameters gives an overestimated value for the
mass of nucleon even in free space, we shall not optimize it,
because we are interested only in the influence of the medium
on the NN potential. Furthermore, the results presented in
Sec. III do not qualitatively change if these parameters are
varied to fit, for example, the nucleon mass or the axial-vector
coupling constant. The sole input parameter in the dilaton
sector is the gluon condensate parameter C∗

g . Its in-medium
renormalization has not been clarified in the literature. In the
present model this quantity can be expressed in terms of the
in-medium sigma-meson mass m∗

σ as [34,37]

C∗
g,A−B = 3F 2

πm∗2
σ,A−B

2(4 − ε)
. (13)

Unfortunately, no information exists about the renormalization
of mσ within the present approach. However, other models
[36,42,43] predict a linear density dependence for m∗

σ . In view
of this, we shall use the following parametrization:

m∗
σ,A−B(x) =

[
1 − 0.12

ρA−B(x)

ρ0

]
mσ , (14)

which was obtained in Ref. [43] within the quark-meson
coupling model.5 The free-space mass of the sigma meson
is taken as mσ = 550 MeV, which corresponds to a free-space
value of Cg = (260 MeV)4.

III. RESULTS AND DISCUSSION

The results of the minimization procedure for a single
skyrmion (B = 1) in the nucleus with an A − 1 background
density is presented in Table I. We have not listed all variational
parameters, as some of them are rather small, namely γi, δi, ηi

for i � 3. These parameters, which describe higher multipole
deviations of the skyrmion shape from the spherical form,
can be neglected without loss of accuracy. A discussion about
the parameters of the chiral sector can be found in Ref. [5],
whereas the ones of the dilaton sector are new. Both sets are
consistent with the fact that the nucleon inside the nucleus
acquires an intrinsic quadrupole moment unless the nucleon
is located directly at the center. Furthermore, note that the
increase of the radial parameter rS of the chiral sector and of
the radial parameter rd of the dilaton sector with increasing
density is in qualitative agreement with the overall picture of
the swelling of the nucleon inside the nucleus. The behavior
of the depth of the dilaton field parametrized by χd is more

5Because in finite nuclei the density is coordinate dependent, m∗
σ

will also acquire a coordinate dependence.
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TABLE I. Deformation parameters at various separations Rk of the center of a single skyrmion from
the center of the nucleus. The parameters rS, γi, δi are for the chiral sector, whereas χd, rd , ηi are for the
dilaton sector. They are obtained by a direct minimization of the mass functional in Eq. (4). Note that
all coefficients γi, δi , ηi for i � 3 are negligible and are not presented here. Nonzero free-space values
of some parameters are rS = 0.398 fm, χd = 0.877, and rd = 0.740 fm.

12C

Rk (fm) 0 ±0.649 ±1.298 ±1.947 ±2.595
rS (fm) 0.512 0.509 0.495 0.467 0.435
γ1 0 ±0.020 ∓0.034 ∓0.105 ∓0.107
γ2 0 −0.028 −0.047 0.001 0.037
10δ1 0 −0.056 −0.097 −0.018 0.047
10δ2 0 0 −0.002 −0.003 −0.001
χd 0.634 0.629 0.592 0.655 0.766
rd (fm) 0.843 0.841 0.835 0.808 0.776
η1 0 ±0.055 ±0.008 ∓0.060 ∓0.054
η2 0 −0.015 −0.032 0 0.017

40Ca

Rk (fm) 0 ±1.705 ±3.409 ±5.114 ±6.819
rS (fm) 0.597 0.576 0.477 0.407 0.398
γ1 0 ∓0.053 ∓0.145 ∓0.035 ∓0.002
γ2 0 −0.011 0.030 0.017 0.001
10δ1 0 −0.026 0.021 0.027 0.002
10δ2 0 0 −0.001 0 0
χd 0.397 0.423 0.650 0.854 0.876
rd (fm) 0.983 0.951 0.818 0.749 0.741
η1 0 ∓0.020 ∓0.076 ∓0.010 ∓0.001
η2 0 −0.005 0.014 0.004 0

involved, but at least for the case of the heavier nucleus, the
dilaton region of the in-medium nucleon becomes shallower
with increasing density. At first sight this is counterintuitive.
However, note that because of the swelling of the nucleon, the
total region where the “effective pion decay parameter” χFπ

is reduced relatively to its vacuum value Fπ has increased
nevertheless.

The results of the calculations for the residual NN

interactions are summarized in Figs. 2 and 3. The spin-isospin–
independent central part V c

NN of the residual NN potential
in 12C is shown in Fig. 2. Our model has not been fine
tuned to reproduce the spin-isospin–independent NN potential
in free space quantitatively. But the qualitative changes are
evident: One can see that short-range repulsive contribution
of the potential is increased and the intermediate attraction is
decreased in the nuclear medium. The same behavior of V c

NN

is observed for skyrmions embedded in 40Ca, as shown in
Fig. 3.

It is known that the residual NN potential becomes
repulsive when neighboring nucleons overlap. It is furthermore
known that the sizes of the nucleons increase in the medium;
see also the parameters rS and rd of Table I. Therefore the
overlap regions increase with density. This leads to a buildup
of the repulsive part of the potential at high densities (i.e., when
the two-nucleon system is near the center of the nucleus).

From previous studies [5] we know that the nucleon mass is
the smallest near the center of nucleus and increases when the
nucleon is moved to the surface. Because of this phenomenon,

nucleons should actually collapse to the center of the nucleus.
In other words, because of the attractive mean-field potential,
nucleons should move to the center. Conversely, the nucleon

FIG. 2. Spin-isospin–independent central part (in the radial direc-
tion) of the residual NN potential in 12C. The solid line corresponds
to the potential in the free case, the dashed line corresponds to D =
3 fm, the dotted line corresponds to D = 2 fm, and the stars
correspond to D = 0 fm.
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FIG. 3. Spin-isospin–independent central part (in radial direc-
tion) of the residual NN potential in 40Ca. The solid line corresponds
to the potential in the free case, the dashed line corresponds to D =
4 fm, the dotted line corresponds to D = 3 fm, and the stars
correspond to D = 0 fm.

concentration near the center of the nucleus does, as shown
in Figs. 2 and 3, increase the repulsive residual potentials
between nucleons such that nucleons are expelled from the
center. Consequently, an equilibrium state arises and there-
fore saturation of the nuclear matter density results. Thus
the nucleons stop their radial motion toward the center of the
nucleus, but their angular motion in a shell of a given radius
continues. An inclusion of the Pauli mechanism in this picture
could finally provide for the shell description of finite nuclei.

Su et al. obtained similar results to ours in the framework
of a chiral σ -ω model under the imaginary-time Green’s
function method [44]. They found that the potential well
of the nucleon-nucleon interaction becomes shallow as the
temperature increases. The same behavior of the NN potential
was seen in quantum hadrodynamics studies [45] and in the
framework of TFD [25]. The latter established, in addition, the
alternative roles of density and temperature effects.

IV. SUMMARY AND OUTLOOK

We have considered the the central part of the residual
NN potential inside finite nuclei (in the radial direction)
in the framework of a dilaton-extended Skyrme model.

We have shown that in the interior region of the heavy
nucleus the residual NN potential is strongly repulsive. It
therefore compensates the mean-field attractive potential and
the reduction of the in-medium nucleon mass in a such way that
the nuclear density has to saturate. These results are consistent
with other studies applying different methods [25,44,45].
However, one should remember that the Skyrme-type models
are the only models that are formulated in terms of hadronic
degrees of freedom (without quarks and gluons) and that
can simultaneously describe both single-baryon as well as
multibaryon properties. In the framework of such a class of
models our results are indeed new.

It would be interesting to investigate the role of the residual
interactions in the formation of nuclear matter itself (i.e., to
study their role in the formation of the mean-field potential).
This requires the additional study of the noncentral parts of
the in-medium NN potential. For example, for some relative
orientations of nucleons in the internal space [see Eq. (11)] the
tensor part of the potential V T

NN makes a negative contribution
to the total NN potential. Such an attraction turned out to be
sufficient for the construction of crystalline [8] or condensate
[46] states of nuclear matter. Note, however, that the additional
in-medium modifications of the NN potential were not taken
into account. In fact, previous Skyrme-model calculations [7]
showed that the tensor part of the residual potential does
decrease in the nuclear medium. Thus the Skyrme model
allows us to combine the tensor and the central potentials
into a full potential that should be shallow because of the
medium influence. The question is whether the changes of the
in-medium NN potential are sufficient to induce a breakdown
of the crystalline structure that does not seem to exist in nature.
Of course, the medium modifications of the NN potential
might only be one of many agents that could induce this
breakdown. For instance, quantum fluctuations [46,47] and
Fermi-motion effects should be of importance [48]. It is well
known that the nuclear matter binding results from a strong
cancellation of an attractive (binding) potential term and a
repulsive kinetic term. It remains to be seen whether the
condensed state of nuclear matter at ordinary densities can
be achieved within the in-medium modified Skyrme model.

ACKNOWLEDGMENTS

This research is part of the EU Integrated Infrastructure
Initiative Hadron Physics Project under contract number RII3-
CT-2004-506078 and is supported in part by DFG (SFB/TR 16)
and by the Forschungszentrum Jülich under contract number
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[10] E. Wüst, G. E. Brown, and A. D. Jackson, Nucl. Phys. A468,
450 (1987).

[11] A. S. Goldhaber and N. S. Manton, Phys. Lett. B198, 231 (1987).
[12] M. Kugler and S. Shtrikman, Phys. Lett. B208, 491 (1988);

Phys. Rev. D 40, 3421 (1989).
[13] A. D. Jackson and J. J. M. Verbaarschot, Nucl. Phys. A484, 419

(1988).
[14] L. Castillejo, P. S. J. Jones, A. D. Jackson, J. J. M. Verbaarschot,

and A. Jackson, Nucl. Phys. A501, 801 (1989).
[15] H. Forkel, A. D. Jackson, M. Rho, C. Weiss, A. Wirzba, and

H. Bang, Nucl. Phys. A504, 818 (1989).
[16] W. K. Baskerville, Nucl. Phys. A596, 611 (1996).
[17] N. S. Manton and P. J. Ruback, Phys. Lett. B181, 137 (1986).
[18] N. S. Manton, Commun. Math. Phys. 111, 469 (1987).
[19] A. D. Jackson, A. Wirzba, and L. Castillejo, Phys. Lett. B198,

315 (1987); Nucl. Phys. A486, 634 (1988); A. D. Jackson,
C. Weiss, A. Wirzba, and A. Lande, ibid. A494, 523
(1989).

[20] A. D. Jackson, N. S. Manton, and A. Wirzba, Nucl. Phys. A495,
499 (1989).

[21] A. Wirzba and H. Bang, Nucl. Phys. A515, 571 (1990).
[22] A. D. Jackson, C. Weiss, and A. Wirzba, Nucl. Phys. A529, 741

(1991).
[23] A. Wirzba, in Baryons as Skyrme Solitons, edited by

G. Holzwarth (World Scientific, Singapore, 1993), arXiv:hep-
ph/9211295.

[24] B. D. Serot and J. D. Walecka, in Advances in Nuclear Physics,
edited by J. W. Negele and E. Vogt (Plenum Press, New York,
1986), Vol. 16, p. 1.

[25] S. Gao, Y.-J. Zhang, and R.-K. Su, Nucl. Phys. A593, 362 (1995).
[26] Y.-J. Zhang, S. Gao, and R.-K. Su, Phys. Rev. C 56, 3336

(1997).
[27] L. Alvarez-Ruso, P. Fernandez de Cordoba, and E. Oset, Nucl.

Phys. A606, 407 (1996).

[28] A. M. Rakhimov, U. T. Yakhshiev, and F. C. Khanna, Phys. Rev.
C 61, 024907 (2000).

[29] U. T. Yakhshiev, A. W. Thomas, and F. C. Khanna, Phys. Rev.
C 68, 048201 (2003).

[30] N. Kaiser and U.-G. Meißner, Phys. Lett. B233, 457 (1989).
[31] N. Kaiser and U.-G. Meißner, Nucl. Phys. A506, 417 (1990).
[32] M. M. Musakhanov and A. M. Rakhimov, Mod. Phys. Lett. A

10, 2297 (1995).
[33] H. Gomm, P. Jain, R. Johnson, and J. Schechter, Phys. Rev. D

33, 3476 (1986); A. A. Migdal and M. A. Shifman, Phys. Lett.
B114, 445 (1982).

[34] V. A. Andrianov and V. Yu. Novozhilov, Phys. Lett. B202, 580
(1988).

[35] G. E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720 (1991);
M. Rho, Phys. Rep. 240, 1 (1994).

[36] G. E. Brown and M. Rho, Phys. Rep. 269, 333 (1996).
[37] M. M. Musakhanov, A. M. Rakhimov, U. T. Yakhshiev, and

Z. Kanokov, Phys. Atom. Nucl. 62, 1845 (1999) [Yad.
Fiz. 62, 1988 (1999)]; A. M. Rakhimov, F. C. Khanna,
U. T. Yakhshiev, and M. M. Musakhanov, Nucl. Phys. A643,
383 (1998).

[38] T. E. Ericson and W. Weise, Pions and Nuclei (Clarendon,
Oxford, 1988).

[39] A. M. Rakhimov, T. Okazaki, M. M. Musakhanov, and
F. C. Khanna, Phys. Lett. B378, 12 (1996).

[40] E. M. Nyman and D.-O. Riska, Phys. Scripta 34, 533
(1986).

[41] A. I. Akhiezer, A. G. Sitenko, and V. K. Tartakovski, Nuclear
Electrodynamics (Springer-Verlag, Berlin, 1994).

[42] U.-G. Meißner, Nucl. Phys. A503, 801 (1989).
[43] K. Saito, K. Tsushima, and A. W. Thomas, Phys. Rev. C 55,

2637 (1997).
[44] R.-K. Su, S.-J. Yang, S. Gao, and P. K. N. Yu, J. Phys. G 20,

1757 (1994).
[45] S. Gao, Y.-J. Zhang, and R.-K. Su, Phys. Rev. C 52, 380 (1995).
[46] D. I. D’yakonov and A. D. Mirlin, Sov. J. Nucl. Phys. 47, 421

(1988) [Yad. Fiz. 47, 662 (1988)].
[47] T. S. Walhout, Nucl. Phys. A484, 397 (1988); A519, 816

(1990).
[48] T. D. Cohen, Nucl. Phys. A495, 545 (1989).

034007-8


