1,906 research outputs found

    Early optical observations of GRBs by the TAROT telescopes: period 2001-2008

    Full text link
    The TAROT telescopes (Telescopes a Action Rapide pour les Objets Transitoires) are two robotic observatories designed to observe the prompt optical emission counterpart and the early afterglow of gamma ray bursts (GRBs). We present data acquired between 2001 and 2008 and discuss the properties of the optical emission of GRBs, noting various interesting results. The optical emission observed during the prompt GRB phase is rarely very bright: we estimate that 5% to 20% of GRBs exhibit a bright optical flash (R<14) during the prompt gamma-ray emission, and that more than 50% of the GRBs have an optical emission fainter than R=15.5 when the gamma-ray emission is active. We study the apparent optical brightness distribution of GRBs at 1000 s showing that our observations confirm the distribution derived by other groups. The combination of these results with those obtained by other rapid slewing telescopes allows us to better characterize the early optical emission of GRBs and to emphasize the importance of very early multi-wavelength GRB studies for the understanding of the physics of the ejecta.Comment: 13 pages, 2 color figures, 5 b&w figures. Accepted for publication in Astronomical Journa

    The structure of superheavy elements newly discovered in the reaction of 86^{86}Kr with 208^{208}Pb

    Get PDF
    The structure of superheavy elements newly discovered in the 208^{208}Pb(86^{86}Kr,n) reaction at Berkeley is systematically studied in the Relativistic Mean Field (RMF) approach. It is shown that various usually employed RMF forces, which give fair description of normal stable nuclei, give quite different predictions for superheavy elements. Among the effective forces we tested, TM1 is found to be the good candidate to describe superheavy elements. The binding energies of the 293^{293}118 nucleus and its α\alpha-decay daughter nuclei obtained using TM1 agree with those of FRDM within 2 MeV. Similar conclusion that TM1 is the good interaction is also drawn from the calculated binding energies for Pb isotopes with the Relativistic Continuum Hartree Bogoliubov (RCHB) theory. Using the pairing gaps obtained from RCHB, RMF calculations with pairing and deformation are carried out for the structure of superheavy elements. The binding energy, shape, single particle levels, and the Q values of the α\alpha-decay QαQ_{\alpha} are discussed, and it is shown that both pairing correlation and deformation are essential to properly understand the structure of superheavy elements. A good agreement is obtained with experimental data on QαQ_{\alpha}. %Especially, the atomic number %dependence of QαQ_{\alpha} %seems to match with the experimental observationComment: 19 pages, 5 figure

    Ternary configuration in the framework of inverse mean-field method

    Get PDF
    A static scission configuration in cold ternary fission has been considered in the framework of mean field approach. The inverse scattering method is applied to solve single-particle Schroedinger equation, instead of constrained selfconsistent Hartree-Fock equations. It is shown, that it is possible to simulate one-dimensional three-center system via inverse scattering method in the approximation of reflectless single-particle potentials.Comment: 8 pages, 1 figure, iopart.cls, to be published in Int.J.Mod.Phys.

    A hybrid version of the tilted axis cranking model and its application to ^{128}Ba

    Full text link
    A hybrid version the deformed nuclear potential is suggested, which combines a spherical Woods Saxon potential with a deformed Nilsson potential. It removes the problems of the conventional Nilsson potential in the mass 130 region. Based on the hybrid potential, tilted axis cranking calculations are carried out for the magnetic dipole band in ^{128}Ba.Comment: 10 pages 6 figure

    Two-Step Model of Fusion for Synthesis of Superheavy Elements

    Get PDF
    A new model is proposed for fusion mechanisms of massive nuclear systems where so-called fusion hindrance exists. The model describes two-body collision processes in an approaching phase and shape evolutions of an amalgamated system into the compound nucleus formation. It is applied to 48^{48}Ca-induced reactions and is found to reproduce the experimental fusion cross sections extremely well, without any free parameter. Combined with the statistical decay theory, residue cross sections for the superheavy elements can be readily calculated. Examples are given.Comment: 4 pages, 4 figure

    Self-Consistent Velocity Dependent Effective Interactions

    Get PDF
    The theory of self-consistent effective interactions in nuclei is extended for a system with a velocity dependent mean potential. By means of the field coupling method, we present a general prescription to derive effective interactions which are consistent with the mean potential. For a deformed system with the conventional pairing field, the velocity dependent effective interactions are derived as the multipole pairing interactions in doubly-stretched coordinates. They are applied to the microscopic analysis of the giant dipole resonances (GDR's) of 148,154Sm{}^{148,154}Sm, the first excited 2+2^+ states of Sn isotopes and the first excited 33^- states of Mo isotopes. It is clarified that the interactions play crucial roles in describing the splitting and structure of GDR peaks, in restoring the energy weighted sum rule, and in reducing the values of B(Eλ)B(E\lambda).Comment: 35 pages, RevTeX, 7 figures (available upon request), to appear in Phys.Rev.

    Microscopic Description of Super Heavy Nuclei

    Full text link
    The results of extensive microscopic Relativistic Mean Field (RMF) calculations for the nuclei appearing in the alpha - decay chains of recently discovered superheavy elements with Z = 109 to 118 are presented and discussed. The calculated ground state properties like total binding energies, Q values, deformations, radii and densities closely agree with the corresponding experimental data, where available. The double folding (t-rho-rho) approximation is used to calculate the interaction potential between the daughter and the alpha, using RMF densities along with the density dependent nucleon - nucleon interaction (M3Y). This in turn, is employed within the WKB approximation to estimate the half lives without any additional parameter for alpha - decay. The half lives are highly sensitive to the Q values used and qualitatively agree with the corresponding experimental values. The use of experimental Q values in the WKB approximation improves the agreement with the experiment, indicating that the resulting interaction potential is reliable and can be used with confidence as the real part of the optical potential in other scattering and reaction processes.Comment: Accepted for publication in Annals of Physics (NY
    corecore