209 research outputs found

    SST: Integrated Fluorocarbon Microsensor System Using Catalytic Modification

    Get PDF
    Selective, sensitive, and reliable sensors are urgently needed to detect air-borne halogenated volatile organic compounds (VOCs). This broad class of compounds includes chlorine, fluorine, bromine, and iodine containing hydrocarbons used as solvents, refrigerants, herbicides, and more recently as chemical warfare agents (CWAs). It is important to be able to detect very low concentrations of halocarbon solvents and insecticides because of their acute health effects even in very low concentrations. For instance, the nerve agent sarin (isopropyl methylphosphonofluoridate), first developed as an insecticide by German chemists in 1938, is so toxic that a ten minute exposure at an airborne concentration of only 65 parts per billion (ppb) can be fatal. Sarin became a household term when religious cult members on Tokyo subway trains poisoned over 5,500 people, killing 12. Sarin and other CWAs remain a significant threat to the health and safety of the general public. The goal of this project is to design a sensor system to detect and identify the composition and concentration of fluorinated VOCs. The system should be small, robust, compatible with metal oxide semiconductor (MOS) technology, cheap, if produced in large scale, and has the potential to be versatile in terms of low power consumption, detection of other gases, and integration in a portable system. The proposed VOC sensor system has three major elements that will be integrated into a microreactor flow cell: a temperature-programmable microhotplate array/reactor system which serves as the basic sensor platform; an innovative acoustic wave sensor, which detects material removal (instead of deposition) to verify and quantify the presence of fluorine; and an intelligent method, support vector machines, that will analyze the complex and high dimensional data furnished by the sensor system. The superior and complementary aspects of the three elements will be carefully integrated to create a system which is more sensitive and selective than other CWA detection systems that are commercially available or described in the research literature. While our sensor system will be developed to detect fluorinated VOCs, it can be adapted for other applications in which a target analyte can be catalytically converted for selective detection. Therefore, this investigation will examine the relationships between individual sensor element performance and joint sensor platform performance, integrated with state-of-the-art data analysis techniques. During development of the sensor system, the investigators will consider traditional reactor design concepts such as mass transfer and residence time effects, and will apply them to the emerging field of microsystems. The proposed research will provide the fundamental basis and understanding for examining multifunctional sensor platforms designed to provide extreme selectivity to targeted molecules. The project will involve interdisciplinary researchers and students and will connect to K-12 and RET programs for underrepresented students from rural areas

    Analysis of 26 Barium Stars II. Contributions of s-, r- and p-processes in the production of heavy elements

    Full text link
    Barium stars show enhanced abundances of the slow neutron capture (s-process) heavy elements, and for this reason they are suitable objects for the study of s-process elements. The aim of this work is to quantify the contributions of the s-, r- and p-processes for the total abundance of heavy elements from abundances derived for a sample of 26 barium stars. The abundance ratios between these processes and neutron exposures were studied. The abundances of the sample stars were compared to those of normal stars thus identifying the fraction relative to the s-process main component. The fittings of the sigmaN curves (neutron capture cross section times abundance, plotted against atomic mass number) for the sample stars suggest that the material from the companion asymptotic giant branch star had approximately the solar isotopic composition as concerns fractions of abundances relative to the s-process main component. The abundance ratios of heavy elements, hs, ls and s and the computed neutron exposure are similar to those of post-AGB stars. For some sample stars, an exponential neutron exposure fits well the observed data, whereas for others, a single neutron exposure provides a better fit. The comparison between barium and AGB stars supports the hypothesis of binarity for the barium star formation. Abundances of r-elements that are part of the s-process path in barium stars are usually higher than those in normal stars,and for this reason, barium stars seemed to be also enriched in r-elements, although in a lower degree than s-elements. No dependence on luminosity classes was found in the abundance ratios behaviour among the dwarfs and giants of the sample barium stars.Comment: 30 pages including 24 figures, accepted to A&

    Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation

    Get PDF
    The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts

    Geodesic and Path Motion in the Nonsymmetric Gravitational Theory

    Full text link
    We study the problem of test-particle motion in the Nonsymmetric Gravitational Theory (NGT) assuming the four-velocity of the particle is parallel-transported along the trajectory. The predicted motion is studied on a static, spherically symmetric background field, with particular attention paid to radial and circular motions. Interestingly, it is found that the proper time taken to travel between any two non-zero radial positions is finite. It is also found that circular orbits can be supported at lower radii than in General Relativity for certain forms of motion. We present three interactions which could be used as alternate methods for coupling a test-particle to the antisymmetric components of the NGT field. One of these takes the form of a Yukawa force in the weak-field limit of a static, spherically symmetric field, which could lead to interesting phenomenology.Comment: 17 pages, REVTeX 3.0 with amssymb.st

    Galactic chemical evolution of heavy elements: from Barium to Europium

    Get PDF
    We follow the chemical evolution of the Galaxy for elements from Ba to Eu, using an evolutionary model suitable to reproduce a large set of Galactic (local and non local) and extragalactic constraints. Input stellar yields for neutron-rich nuclei have been separated into their s-process and r-process components. The production of s-process elements in thermally pulsing asymptotic giant branch stars of low mass proceeds from the combined operation of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases neutrons in radiative conditions during the interpulse phase, and the reaction 22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The resulting s-process distribution is strongly dependent on the stellar metallicity. For the standard model discussed in this paper, it shows a sharp production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process yields, we assume that the production of r-nuclei is a primary process occurring in stars near the lowest mass limit for Type II supernova progenitors. The r-contribution to each nucleus is computed as the difference between its solar abundance and its s-contribution given by the Galactic chemical evolution model at the epoch of the solar system formation. We compare our results with spectroscopic abundances of elements from Ba to Eu at various metallicities (mainly from F and G stars) showing that the observed trends can be understood in the light of the present knowledge of neutron capture nucleosynthesis. Finally, we discuss a number of emerging features that deserve further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap

    A Spitzer Space Telescope study of SN 2002hh: an infrared echo from a Type IIP supernova

    Get PDF
    We present late-time (590-994 d) mid-IR photometry of the normal, but highly-reddened Type IIP supernova SN 2002hh. Bright, cool, slowly-fading emission is detected from the direction of the supernova. Most of this flux appears not to be driven by the supernova event but instead probably originates in a cool, obscured star-formation region or molecular cloud along the line-of-sight. We also show, however, that the declining component of the flux is consistent with an SN-powered IR echo from a dusty progenitor CSM. Mid-IR emission could also be coming from newly-condensed dust and/or an ejecta/CSM impact but their contributions are likely to be small. For the case of a CSM-IR echo, we infer a dust mass of as little as 0.036 M(solar) with a corresponding CSM mass of 3.6(0.01/r(dg))M(solar) where r(dg) is the dust-to-gas mass ratio. Such a CSM would have resulted from episodic mass loss whose rate declined significantly about 28,000 years ago. Alternatively, an IR echo from a surrounding, dense, dusty molecular cloud might also have been responsible for the fading component. Either way, this is the first time that an IR echo has been clearly identified in a Type IIP supernova. We find no evidence for or against the proposal that Type IIP supernovae produce large amounts of dust via grain condensation in the ejecta. However, within the CSM-IR echo scenario, the mass of dust derived implies that the progenitors of the most common of core-collapse supernovae may make an important contribution to the universal dust content.Comment: 41 pages, 11 figures, 4 tables, accepted for publication in Astrophysical Journal (References corrected

    Data incongruence and the problem of avian louse phylogeny

    Get PDF
    Recent studies based on different types of data (i.e. morphological and molecular) have supported conflicting phylogenies for the genera of avian feather lice (Ischnocera: Phthiraptera). We analyse new and published data from morphology and from mitochondrial (12S rRNA and COI) and nuclear (EF1-) genes to explore the sources of this incongruence and explain these conflicts. Character convergence, multiple substitutions at high divergences, and ancient radiation over a short period of time have contributed to the problem of resolving louse phylogeny with the data currently available. We show that apparent incongruence between the molecular datasets is largely attributable to rate variation and nonstationarity of base composition. In contrast, highly significant character incongruence leads to topological incongruence between the molecular and morphological data. We consider ways in which biases in the sequence data could be misleading, using several maximum likelihood models and LogDet corrections. The hierarchical structure of the data is explored using likelihood mapping and SplitsTree methods. Ultimately, we concede there is strong discordance between the molecular and morphological data and apply the conditional combination approach in this case. We conclude that higher level phylogenetic relationships within avian Ischnocera remain extremely problematic. However, consensus between datasets is beginning to converge on a stable phylogeny for avian lice, at and below the familial rank

    Center Director's Discretionary Fund 2005 Annual Report

    Get PDF
    The FY 2005 CDDF projects were selected from the following spaceport and range technology and science areas: fluid system technologies; spaceport structures and materials; command, control, and monitoring technologies; and biological sciences (including support for environmental stewardship). The FY 2005 CDDF research projects involved development of the following: a) Capacitance-based moisture sensors to optimize plant growth in reduced gravity; b) Commodity-free calibration methods; c) Application of atmospheric plasma glow discharge to alter the surface properties of polymers for improved electrostatic dissipation characteristics; d) A wipe-on, wipe-off chemical process to remove lead oxides found in paint; e) A robust metabolite profiling platform for better understanding the "law" of biological regulation; f) An explanation of the excavation processes that occur when a jet of gas impinges on a bed of sand; g) "Smart coatings" to detect and control corrosion at an early stage to prevent further corrosion h) A model that can produce a reliable diagnosis of the quality of a software product; i) The formulation of advanced materials to meet system safety needs to minimize electrostatic charges, flammability, and radiation exposure; j) A lab-based instrument that uses the electro-optic Pockels effect to make static electric fields visible; k) A passive volatile organic compound (VOC) cartridge to filter, identify, and quantify VOCs flowing into or emanating from plant flight experiments

    Characterisation of feline renal cortical fibroblast cultures and their transcriptional response to transforming growth factor beta 1

    Get PDF
    Chronic kidney disease (CKD) is common in geriatric cats, and the most prevalent pathology is chronic tubulointerstitial inflammation and fibrosis. The cell type predominantly responsible for the production of extra-cellular matrix in renal fibrosis is the myofibroblast, and fibroblast to myofibroblast differentiation is probably a crucial event. The cytokine TGF-β1 is reportedly the most important regulator of myofibroblastic differentiation in other species. The aim of this study was to isolate and characterise renal fibroblasts from cadaverous kidney tissue of cats with and without CKD, and to investigate the transcriptional response to TGF-β1
    corecore