71 research outputs found

    Coating of Felt Fibers with Carbon Nanotubes and PEDOT with Different Counterions: Temperature and Electrical Field Effects.

    Get PDF
    The use of wearable devices has promoted new ways of integrating these devices, one of which is through the development of smart textiles. Smart textiles must possess the mechanical and electrical properties necessary for their functionality. This study explores the impact of polymer-felt microstructure variations on their morphology, electrical, and mechanical properties. The application of thermal treatment, along with an electric field, leads to a substantial structural reorganization of the molecular chains within pristine felt. This results in a system of nanofibrils coated with MWCNT-PEDOT, characterized by highly ordered counterions that facilitate the flow of charge carriers. Both temperature and an electric field induce reversible microstructural changes in pristine felt and irreversible changes in coated felt samples. Furthermore, electropolymerization of PEDOT significantly enhances electrical conductivity, with PEDOT:BTFMSI-coated fabric exhibiting the highest conductivity

    Analysis of adiabatic heating and its influence on the Garofalo equation parameters of a high nitrogen steel

    Get PDF
    Torsion tests at high temperatures and high strain rates were conducted on a high nitrogen steel (HNS). Under these conditions, adiabatic heating influences its flow behavior. This work focus on a new algorithm for conducting the adiabatic heating correction of stress-strain curves. The algorithm obtains the stress-strain curves at quasiisothermal conditions from those at adiabatic conditions. The corrections in stress obtained can be higher than 15% and increase with increasing strain rates and decreasing temperatures. On the other hand, an upper bound for the temperature rise was found using a dynamic material behavior approach. Finally, the influence of adiabatic heating correction on the Garofalo equation parameters of HNS was analyzed. High values of activation energy and stress exponent were attributed to reinforcement by dispersed carbonitrides and the high amount of alloying elements.The work was carried out through the Projects PBC-05-010-1 from JCCM (Castilla- La Mancha, Spain) and MAT2006-13348 from CICYT. Thanks are given to Prof. E Evangelista for valuable assistance.Peer reviewe

    Building Urban Resilience: A Dynamic Process Composition Approach

    Get PDF
    Urban resilience (also referred to as city resilience) has become a strategic goal of city administrators. Given the diversity of threats and city contexts, managing urban resilience is a complex task that has been conceptualized as a process by the so-called urban resilience frameworks proposed during the last decade. But conceptualization is not enough: an urban resilience building process may last for months, even years, and needs to coordinate many different actors using different tools. Therefore, some type of tool support is required for process control. In this paper, we introduce a proposal for the operationalization of urban resilience processes based on the notion of process family. The notion of family allows to deal with the natural diversity of urban resilience, and its transformation into a process specification allows the enactment, monitoring and measuring of the process. We have applied our approach to the well-known Smart Mature Resilience framework

    Monitoring molecular dynamics of bacterial cellulose composites reinforced with graphene oxide by carboxymethyl cellulose addition

    Full text link
    [EN] Broadband Dielectric Relaxation Spectroscopy was performed to study the molecular dynamics of dried Bacterial Cellulose/Carboxymethyl Cellulose-Graphene Oxide (BC/CMC-GO) composites as a function of the concentration of CMC in the culture media. At low temperature the dielectric spectra are dominated by a dipolar process labelled as a beta -relaxation, whereas electrode polarization and the contribution of dc-conductivity dominate the spectra at high temperatures and low frequency. The CMC concentration affects the morphological structure of cellulose and subsequently alters its physical properties. X-ray diffractometry measurements show that increasing the concentration of CMC promotes a decrease of the Ia/Ib ratio. This structural change in BC, that involves a variation in inter- and intramolecular interactions (hydrogen-bonding interactions), affects steeply their molecular dynamics. So, an increase of CMC concentration produces a significantly decrease of the -relaxation strength and an increase of the dc-conductivity.This work was supported by the DGCYT [MAT2015-63955-R]; the Vice-Rectorate for Research of the Pontificia Universidad Catolica del Peril and the National Council of Science, Technology and Technological Innovation of Peru (CONCYTEC/FONDECYT).Sanchis Sánchez, MJ.; Carsí Rosique, M.; Gomez, CM.; Culebras, M.; Gonzales, K.; Gisbert Torres, F. (2017). Monitoring molecular dynamics of bacterial cellulose composites reinforced with graphene oxide by carboxymethyl cellulose addition. Carbohydrate Polymers. 157:353-360. https://doi.org/10.1016/j.carbpol.2016.10.00135336015

    Effect of Chitin Whiskers on the Molecular Dynamics of Carrageenan-Based Nanocomposites

    Get PDF
    [EN] Films of carrageenan (KC) and glycerol (g) with different contents of chitin nanowhiskers (CHW) were prepared by a solution casting process. The molecular dynamics of pure carrageenan (KC), carrageenan/glycerol (KCg) and KCg with different quantities of CHWs as a filler was studied using dielectric relaxation spectroscopy. The analysis of the CHW effect on the molecular mobility at the glass transition, T-g, indicates that non-attractive intermolecular interactions between KCg and CHW occur. The fragility index increased upon CHW incorporation, due to a reduction in the polymer chains mobility produced by the CHW confinement of the KCg network. The apparent activation energy associated with the relaxation dynamics of the chains at T-g slightly increased with the CHW content. The filler nature effect, CHW or montmorillonite (MMT), on the dynamic mobility of the composites was analyzed by comparing the dynamic behavior of both carrageenan-based composites (KCg/xCHW, KCg/xMMT).This research was funded by the DGCYT grant number [MAT2015-63955-R] and the Vice-Rectorate for Research of the Pontificia Universidad Catolica del Peru and the the Peruvian Science and Technology Program (INNOVATE-PERU) And The APC was funded by MDPI.Carsí Rosique, M.; Sanchis Sánchez, MJ.; Gómez, CM.; Rodriguez, S.; García-Torres, F. (2019). Effect of Chitin Whiskers on the Molecular Dynamics of Carrageenan-Based Nanocomposites. Polymers. 11(6):1-16. https://doi.org/10.3390/polym11061083116116Zheng, Y., Monty, J., & Linhardt, R. J. (2015). Polysaccharide-based nanocomposites and their applications. Carbohydrate Research, 405, 23-32. doi:10.1016/j.carres.2014.07.016Jamróz, E., Kulawik, P., & Kopel, P. (2019). The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Polymers, 11(4), 675. doi:10.3390/polym11040675Park, S.-B., Lih, E., Park, K.-S., Joung, Y. K., & Han, D. K. (2017). Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 68, 77-105. doi:10.1016/j.progpolymsci.2016.12.003Xie, F., Pollet, E., Halley, P. J., & Avérous, L. (2013). Starch-based nano-biocomposites. Progress in Polymer Science, 38(10-11), 1590-1628. doi:10.1016/j.progpolymsci.2013.05.002Zhang, R., Wang, X., Wang, J., & Cheng, M. (2018). Synthesis and Characterization of Konjac Glucomannan/Carrageenan/Nano-silica Films for the Preservation of Postharvest White Mushrooms. Polymers, 11(1), 6. doi:10.3390/polym11010006Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J., … Schmid, M. (2017). Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials, 7(4), 74. doi:10.3390/nano7040074Shankar, S., Reddy, J. P., Rhim, J.-W., & Kim, H.-Y. (2015). Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polymers, 117, 468-475. doi:10.1016/j.carbpol.2014.10.010Corvaglia, S., Rodriguez, S., Bardi, G., Torres, F. G., & Lopez, D. (2016). Chitin whiskers reinforced carrageenan films as low adhesion cell substrates. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(11), 574-580. doi:10.1080/00914037.2016.1149846Shojaee-Aliabadi, S., Mohammadifar, M. A., Hosseini, H., Mohammadi, A., Ghasemlou, M., Hosseini, S. M., … Khaksar, R. (2014). Characterization of nanobiocomposite kappa-carrageenan film with Zataria multiflora essential oil and nanoclay. International Journal of Biological Macromolecules, 69, 282-289. doi:10.1016/j.ijbiomac.2014.05.015Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., & Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38(10-11), 1653-1689. doi:10.1016/j.progpolymsci.2013.05.006Wang, P., Zhao, X., Lv, Y., Li, M., Liu, X., Li, G., & Yu, G. (2012). Structural and compositional characteristics of hybrid carrageenans from red algae Chondracanthus chamissoi. Carbohydrate Polymers, 89(3), 914-919. doi:10.1016/j.carbpol.2012.04.034Byankina (Barabanova), A. O., Sokolova, E. V., Anastyuk, S. D., Isakov, V. V., Glazunov, V. P., Volod’ko, A. V., … Yermak, I. M. (2013). Polysaccharide structure of tetrasporic red seaweed Tichocarpus crinitus. Carbohydrate Polymers, 98(1), 26-35. doi:10.1016/j.carbpol.2013.04.063Stortz, C. A., & Cerezo, A. S. (1992). The 13C NMR spectroscopy of carrageenans: calculation of chemical shifts and computer-aided structural determination. Carbohydrate Polymers, 18(4), 237-242. doi:10.1016/0144-8617(92)90088-8Rodriguez, S. A., Weese, E., Nakamatsu, J., & Torres, F. (2016). Development of Biopolymer Nanocomposites Based on Polysaccharides Obtained from Red AlgaeChondracanthus chamissoiReinforced with Chitin Whiskers and Montmorillonite. Polymer-Plastics Technology and Engineering, 55(15), 1557-1564. doi:10.1080/03602559.2016.1163583Mitsuiki, M., Yamamoto, Y., Mizuno, A., & Motoki, M. (1998). Glass Transition Properties as a Function of Water Content for Various Low-Moisture Galactans. Journal of Agricultural and Food Chemistry, 46(9), 3528-3534. doi:10.1021/jf9709820Picker, K. M. (1999). The use of carrageenan in mixture with microcrystalline cellulose and its functionality for making tablets. European Journal of Pharmaceutics and Biopharmaceutics, 48(1), 27-36. doi:10.1016/s0939-6411(99)00009-0Kasapis, S., & Mitchell, J. R. (2001). Definition of the rheological glass transition temperature in association with the concept of iso-free-volume. International Journal of Biological Macromolecules, 29(4-5), 315-321. doi:10.1016/s0141-8130(01)00180-5Fouda, M. M. G., El-Aassar, M. R., El Fawal, G. F., Hafez, E. E., Masry, S. H. D., & Abdel-Megeed, A. (2015). k-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application. International Journal of Biological Macromolecules, 74, 179-184. doi:10.1016/j.ijbiomac.2014.11.040Arof, A. K., Shuhaimi, N. E. A., Alias, N. A., Kufian, M. Z., & Majid, S. R. (2010). Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). Journal of Solid State Electrochemistry, 14(12), 2145-2152. doi:10.1007/s10008-010-1050-8Rescignano, N., Fortunati, E., Armentano, I., Hernandez, R., Mijangos, C., Pasquino, R., & Kenny, J. M. (2015). Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles. Journal of Colloid and Interface Science, 445, 31-39. doi:10.1016/j.jcis.2014.12.032Chang, P. R., Jian, R., Yu, J., & Ma, X. (2010). Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers, 80(2), 420-425. doi:10.1016/j.carbpol.2009.11.041Zeng, J.-B., He, Y.-S., Li, S.-L., & Wang, Y.-Z. (2011). Chitin Whiskers: An Overview. Biomacromolecules, 13(1), 1-11. doi:10.1021/bm201564aVillanueva, M. E., Salinas, A., Díaz, L. E., & Copello, G. J. (2015). Chitin nanowhiskers as alternative antimicrobial controlled release carriers. New Journal of Chemistry, 39(1), 614-620. doi:10.1039/c4nj01522cKameda, T., Miyazawa, M., Ono, H., & Yoshida, M. (2005). Hydrogen Bonding Structure and Stability of?-Chitin Studied by13C Solid-State NMR. Macromolecular Bioscience, 5(2), 103-106. doi:10.1002/mabi.200400142MARCHESSAULT, R. H., MOREHEAD, F. F., & WALTER, N. M. (1959). Liquid Crystal Systems from Fibrillar Polysaccharides. Nature, 184(4686), 632-633. doi:10.1038/184632a0Paillet, M., & Dufresne, A. (2001). Chitin Whisker Reinforced Thermoplastic Nanocomposites. Macromolecules, 34(19), 6527-6530. doi:10.1021/ma002049vGopalan Nair, K., & Dufresne, A. (2003). Crab Shell Chitin Whisker Reinforced Natural Rubber Nanocomposites. 1. Processing and Swelling Behavior. Biomacromolecules, 4(3), 657-665. doi:10.1021/bm020127bHuang, Y., Yao, M., Zheng, X., Liang, X., Su, X., Zhang, Y., … Zhang, L. (2015). Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels. Biomacromolecules, 16(11), 3499-3507. doi:10.1021/acs.biomac.5b00928Morin, A., & Dufresne, A. (2002). Nanocomposites of Chitin Whiskers from Riftia Tubes and Poly(caprolactone). Macromolecules, 35(6), 2190-2199. doi:10.1021/ma011493aWatthanaphanit, A., Supaphol, P., Tamura, H., Tokura, S., & Rujiravanit, R. (2008). Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. Journal of Applied Polymer Science, 110(2), 890-899. doi:10.1002/app.28634Salaberria, A. M., Diaz, R. H., Labidi, J., & Fernandes, S. C. M. (2015). Preparing valuable renewable nanocomposite films based exclusively on oceanic biomass – Chitin nanofillers and chitosan. Reactive and Functional Polymers, 89, 31-39. doi:10.1016/j.reactfunctpolym.2015.03.003Rodríguez, S., Gatto, F., Pesce, L., Canale, C., Pompa, P. P., Bardi, G., … Torres, F. G. (2017). Monitoring cell substrate interactions in exopolysaccharide-based films reinforced with chitin whiskers and starch nanoparticles used as cell substrates. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(6), 333-339. doi:10.1080/00914037.2017.1297942Pazmiño Betancourt, B. A., Douglas, J. F., & Starr, F. W. (2013). Fragility and cooperative motion in a glass-forming polymer–nanoparticle composite. Soft Matter, 9(1), 241-254. doi:10.1039/c2sm26800kSanchis, M. J., Carsí, M., Culebras, M., Gómez, C. M., Rodriguez, S., & Torres, F. G. (2017). Molecular dynamics of carrageenan composites reinforced with Cloisite Na+ montmorillonite nanoclay. Carbohydrate Polymers, 176, 117-126. doi:10.1016/j.carbpol.2017.08.012Wu, J., Zhang, K., Girouard, N., & Meredith, J. C. (2014). Facile Route to Produce Chitin Nanofibers as Precursors for Flexible and Transparent Gas Barrier Materials. Biomacromolecules, 15(12), 4614-4620. doi:10.1021/bm501416qSauti, G., & McLachlan, D. S. (2007). Impedance and modulus spectra of the percolation system silicon–polyester resin and their analysis using the two exponent phenomenological percolation equation. Journal of Materials Science, 42(16), 6477-6488. doi:10.1007/s10853-007-1564-3Johari, G. P., Kim, S., & Shanker, R. M. (2007). Dielectric Relaxation and Crystallization of Ultraviscous Melt and Glassy States of Aspirin, Ibuprofen, Progesterone, and Quinidine. Journal of Pharmaceutical Sciences, 96(5), 1159-1175. doi:10.1002/jps.20921Anastasiadis, S. H., Karatasos, K., Vlachos, G., Manias, E., & Giannelis, E. P. (2000). Nanoscopic-Confinement Effects on Local Dynamics. Physical Review Letters, 84(5), 915-918. doi:10.1103/physrevlett.84.915Böhning, M., Goering, H., Fritz, A., Brzezinka, K.-W., Turky, G., Schönhals, A., & Schartel, B. (2005). Dielectric Study of Molecular Mobility in Poly(propylene-graft-maleic anhydride)/Clay Nanocomposites. Macromolecules, 38(7), 2764-2774. doi:10.1021/ma048315cHodge, I. M., Ngai, K. L., & Moynihan, C. T. (2005). Comments on the electric modulus function. Journal of Non-Crystalline Solids, 351(2), 104-115. doi:10.1016/j.jnoncrysol.2004.07.089Havriliak, S., & Negami, S. (2007). A complex plane analysis of α-dispersions in some polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 14(1), 99-117. doi:10.1002/polc.5070140111TSANGARIS, G. M., PSARRAS, G. C., & TSANGARIS, G. M. (1998). Electric modulus and interfacial polarization in composite polymeric systems. Journal of Materials Science, 33(8), 2027-2037. doi:10.1023/a:1004398514901Fulcher, G. S. (1925). ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES. Journal of the American Ceramic Society, 8(6), 339-355. doi:10.1111/j.1151-2916.1925.tb16731.xTammann, G., & Hesse, W. (1926). Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, 156(1), 245-257. doi:10.1002/zaac.19261560121Fragiadakis, D., Pissis, P., & Bokobza, L. (2005). Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer, 46(16), 6001-6008. doi:10.1016/j.polymer.2005.05.080Rittigstein, P., & Torkelson, J. M. (2006). Polymer-nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. Journal of Polymer Science Part B: Polymer Physics, 44(20), 2935-2943. doi:10.1002/polb.20925Oh, H., & Green, P. F. (2009). Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nature Materials, 8(2), 139-143. doi:10.1038/nmat2354Riggleman, R. A., Yoshimoto, K., Douglas, J. F., & de Pablo, J. J. (2006). Influence of Confinement on the Fragility of Antiplasticized and Pure Polymer Films. Physical Review Letters, 97(4). doi:10.1103/physrevlett.97.045502Doolittle, A. K. (1951). Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free‐Space. Journal of Applied Physics, 22(12), 1471-1475. doi:10.1063/1.1699894Doolittle, A. K. (1952). Studies in Newtonian Flow. III. The Dependence of the Viscosity of Liquids on Molecular Weight and Free Space (in Homologous Series). Journal of Applied Physics, 23(2), 236-239. doi:10.1063/1.1702182Plazek, D. J., & Ngai, K. L. (1991). Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts. Macromolecules, 24(5), 1222-1224. doi:10.1021/ma00005a044Merino, E. G., Atlas, S., Raihane, M., Belfkira, A., Lahcini, M., Hult, A., … Correia, N. T. (2011). Molecular dynamics of poly(ATRIF) homopolymer and poly(AN-co-ATRIF) copolymer investigated by dielectric relaxation spectroscopy. European Polymer Journal, 47(7), 1429-1446. doi:10.1016/j.eurpolymj.2011.04.006Böhmer, R., Ngai, K. L., Angell, C. A., & Plazek, D. J. (1993). Nonexponential relaxations in strong and fragile glass formers. The Journal of Chemical Physics, 99(5), 4201-4209. doi:10.1063/1.466117Roland, C. M., & Ngai, K. L. (1991). Segmental relaxation and molecular structure in polybutadienes and polyisoprene. Macromolecules, 24(19), 5315-5319. doi:10.1021/ma00019a016Roland, C. M., & Ngai, K. L. (1992). Segmental relaxation and molecular structure in polybutadienes and polyisoprene. [Erratum to document cited in CA115(14):137101w]. Macromolecules, 25(6), 1844-1844. doi:10.1021/ma00032a038Ngai, K. L., & Roland, C. M. (1993). Chemical structure and intermolecular cooperativity: dielectric relaxation results. Macromolecules, 26(25), 6824-6830. doi:10.1021/ma00077a019Roland, C. M. (1992). Terminal and segmental relaxations in epoxidized polyisoprene. Macromolecules, 25(25), 7031-7036. doi:10.1021/ma00051a047Angell, C. A., Poole, P. H., & Shao, J. (1994). Glass-forming liquids, anomalous liquids, and polyamorphism in liquids and biopolymers. Il Nuovo Cimento D, 16(8), 993-1025. doi:10.1007/bf02458784Roland, C. M., & Ngai, K. L. (1996). The anomalous Debye–Waller factor and the fragility of glasses. The Journal of Chemical Physics, 104(8), 2967-2970. doi:10.1063/1.471117Hodge, I. M. (1987). Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam-Gibbs formulation of nonlinearity. Macromolecules, 20(11), 2897-2908. doi:10.1021/ma00177a044Hodge, I. M. (1996). Strong and fragile liquids — a brief critique. Journal of Non-Crystalline Solids, 202(1-2), 164-172. doi:10.1016/0022-3093(96)00151-2Roland, C. M., & Ngai, K. L. (1997). Commentary on ‘Strong and fragile liquids - A brief critique’. Journal of Non-Crystalline Solids, 212(1), 74-76. doi:10.1016/s0022-3093(96)00684-9Angell, C. A. (1997). Why C1 = 16–17 in the WLF equation is physical—and the fragility of polymers. Polymer, 38(26), 6261-6266. doi:10.1016/s0032-3861(97)00201-2Angell, C. A. (1995). Formation of Glasses from Liquids and Biopolymers. Science, 267(5206), 1924-1935. doi:10.1126/science.267.5206.1924Angell, C. . (1991). Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. Journal of Non-Crystalline Solids, 131-133, 13-31. doi:10.1016/0022-3093(91)90266-9Kunal, K., Robertson, C. G., Pawlus, S., Hahn, S. F., & Sokolov, A. P. (2008). Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture. Macromolecules, 41(19), 7232-7238. doi:10.1021/ma801155cSokolov, A. P., Novikov, V. N., & Ding, Y. (2007). Why many polymers are so fragile. Journal of Physics: Condensed Matter, 19(20), 205116. doi:10.1088/0953-8984/19/20/205116Sanchis, M. J., Domínguez-Espinosa, G., Díaz-Calleja, R., Guzmán, J., & Riande, E. (2008). Influence of structural chemical characteristics on polymer chain dynamics. The Journal of Chemical Physics, 129(5), 054903. doi:10.1063/1.295649

    Osteotomías distales de los metatarsianos menores realizadas por cirugía abierta vs cirugía percutánea en el tratamiento de las metatarsalgias.

    Get PDF
    Objetivo. Comparar los resultados clínicos y radiológicos de las osteotomías distales de los metatarsianos menores realizadas por cirugía abierta y por cirugía percutánea en el tratamiento de las metatarsalgias Material y método. Revisión retrospectiva de 44 metatarsalgias: 22 en cada grupo. Recogida de datos epidemiológicos, clínicos y medición de parámetros radiográficos. Resultados. Se consiguieron modificaciones en los parámetros radiográficos con ambas técnicas, con mayor corrección con la cirugía abierta. Las fórmulas metatarsales postoperatorias continuaron siendo no armónicas en ambos grupos. Todos los pacientes mejoraron clínicamente. La cirugía abierta tuvo más complicaciones. Conclusiones. Los resultados clínicos y radiológicos de las osteotomías percutáneas son similares a los obtenidos por cirugía abierta, pero con menos complicaciones. La obtención de una fórmula metatarsal armónica no debería ser el objetivo principal de la cirugía de las metatarsalgias, ya que, según nuestro estudio, no es una condición indispensable para lograr un buen resultado clínicoObjectives. To compare the radiographic and functional outcomes in lesser metatarsal distal osteotomies performed by percutaneous and open surgery for the treatment of metatarsalgia. Methods. A retrospective medical record review of 44 cases of discharge diagnosis of metatarsalgia: 22 patients in each group. Epidemiological data, clinical data and radiological measurements were collected. Results . Improvement of radiological parameters were obtained with both techniques, with better correction with open than with percutaneous surgery. Postoperatively metatarsal parabola continues being nonharmonious in both groups. All patients improved in clinical assessment. Open surgery had more complications than percutaneous surgery. Conclusions . Clinical and radiological outcomes of lesser metatarsal distal osteotomies performed percutaneously are similar to those obtained by open surgery, but with fewer complications. To obtain a harmonic metatarsal parabola should not be the main purpose of surgery of metatarsalgia because it is not an essential condition to achieve a good clinical outcome

    Hallux Rigidus de grado medio : nuestra técnica quirúrgica de elección

    Get PDF
    Hallux rigidus is the result of a degenerative process of the metatarsophalangeal joint of the hallux. In the intermediate stages there are controversies in the type of treatments and different types of osteotomies can be performed. Objective. To analyze cases of moderate grade hallux rigidus that have undergone surgery at out center with a chevron-type modified osteotomy. Material and methods. We conducted a retrospective study between January 2013 and December 2015 of 21 hallux rigidus with a minimum follow-up of 12 months. To evaluate the results we used the AOFAS questionnaire and the visual analogue scale (VAS). At the end of the follow-up we also conducted a satisfaction questionnaire. Results. The postoperative results show a considerable increase in the average mean of the AOFAS questionnaire from 61,3 before surgery to 92,1 at 12 months after surgery. The VAS improved 6 points and 18 patients were very satisfied with the results. There were no cases of nonunion, avascular necrosis, MTF stiffness, failed implants or infection. No patient was reoperated. Conclusion. We believe that our technique can be useful nowadays. This technique is easy to perform and reproducibl
    corecore