60 research outputs found

    Heavy metals and woody plants - biotechnologies for phytoremediation

    Full text link

    Assessment of riparian conditions in the Nooksack River Basin with the combination of LiDAR, multi-spectral imagery and GIS

    Get PDF
    Riparian areas are a complex component of stream ecosystems and provide critical habitat for Pacific salmon (Oncorhynchus spp.). Comprehensive techniques are needed for assessing riparian areas that can be used on small and large regional scales. I examined the application of airborne LiDAR and high resolution multi-spectral imagery from the World View-2 (WV-2) satellite to analyze riparian landcover and riparian forest structure in the Nooksack River Watershed. I employed an object-oriented approach to segment the imagery into meaningful objects consisting of groups of pixels. I examined the advantages of the four additional spectral bands from the 8-Band World View-2 Image compared to the traditional four spectral bands provided from conventional high resolution multi-spectral imagery. Using the Random Forest algorithm, I developed classification and regression models to predict the features of interest across the study area. The classification results from the 8-Band WV-2 image were improved over the traditional 4-Band WV-2 image that is comparable to other high resolution sensors such as IKONOS and Quickbird. Analyzing the combined LiDAR and 8-Band WV-2 spectral data improved the results for landcover classification but did not improve the results for riparian forest structural predictions. However, the results generated from the LiDAR only image was comparable to the 8-Band WV-2 spectral imagery at classifying forest classes and remarkably better at predicting forest structure data. The overall results indicate that classification of forested cover type and structural properties of riparian forest stands can be determined accurately for relatively large study areas with LiDAR-based approaches. From the final LiDAR image output, I applied the models to categorize the riparian forest based on forest class, size, and density to show one application of the results generated in this study. The categorized map provides a tool to prioritize restoration and preservation needs within the riparian forest landscape in the Nooksack River Basin study area

    Hemorrhagic risk after intravenous thrombolysis for ischemic stroke in patients with cerebral microbleeds and white matter disease

    Get PDF
    Objectives: Aim of this study was to evaluate the association between cerebral microbleeds (CMBs) and white matter disease (WMD) with intracerebral hemorrhage (ICH) after intravenous thrombolysis (IVT) with rt-PA. We also evaluated whether CMBs characteristics and WMD burden correlate with symptomatic ICH and outcome. Methods: We included acute ischemic stroke (AIS) patients treated with IVT. The number and location of CMBs as well as severity of WMD were rated analyzing pre- or post-treatment MRI. Multivariable regression analysis was used to determine the impact of CMB and WMD on ICH subgroups and outcome measures. Results: 434 patients were included. CMBs were detected in 23.3% of them. ICH occurred in 34.7% of patients with CMBs. Independent predictors of parenchymal hemorrhage were the presence of CMBs (OR 2.724, 95% CI 1.360–5.464, p = 0.005) as well as cortical-subcortical stroke (OR 3.629, 95% CI 1.841–7.151, p < 0.001) and atherothrombotic stroke subtype (OR 3.381, 95% CI 1.335–8.566, p = 0.010). Either the presence, or number, and location of CMBs, as well as WMD, was not independently associated with the development of SICH. No independent association between the presence, number, or location of CMBs or WMD and outcome measures was observed. Conclusions: The results of our study suggest that the exclusion of eligible candidates to administration of IV rt-PA only on the basis of CMBs presence is not justified. The clinical decision should be weighed with a case-by-case approach. Additional data are needed to evaluate the benefit-risk profile of rt-PA in patients carrying numerous microbleeds

    Physical and biological properties of electrospun poly(d,l-lactide)/nanoclay and poly(d,l-lactide)/nanosilica nanofibrous scaffold for bone tissue engineering

    Get PDF
    Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrations of nanosilica and nanoclay were evaluated and compared. The inclusion of the particles was evaluated through morphological investigations and Fourier transform infrared spectroscopy. The morphology of nanofibers was differently affected by the amount and kind of fillers and it was correlated to the viscosity of the polymeric suspensions. The wettability of the scaffolds, evaluated through wet contact angle measurements, slightly increased for both the nanocomposites. The crystallinity of the systems was investigated by differential scanning calorimetry highlighting the nucleating action of both nanosilica and nanoclay on PLA. Scaffolds were mechanically characterized with tensile tests to evaluate the reinforcing action of the fillers. Finally, cell culture assays with pre-osteoblastic cells were conducted on a selected composite scaffold in order to compare the cell proliferation and morphology with that of neat PLA scaffolds. Based on the results, we can convince that nanosilica and nanoclay can be both considered great potential fillers for electrospun systems engineered for bone tissue regeneration

    Imaging of Dysfunctional Elastogenesis in Atherosclerosis Using an Improved Gadolinium-Based Tetrameric MRI Probe Targeted to Tropoelastin

    Get PDF
    Dysfunctional elastin turnover plays a major role in the progression of atherosclerotic plaques. Failure of tropoelastin cross-linking into mature elastin leads to the accumulation of tropoelastin within the growing plaque, increasing its instability. Here we present Gd4-TESMA, an MRI contrast agent specifically designed for molecular imaging of tropoelastin within plaques. Gd4-TESMA is a tetrameric probe composed of a tropoelastin-binding peptide (the VVGS-peptide) conjugated with four Gd(III)-DOTA-monoamide chelates. It shows a relaxivity per molecule of 34.0 ± 0.8 mM-1 s-1 (20 MHz, 298 K, pH 7.2), a good binding affinity to tropoelastin (KD = 41 ± 12 μM), and a serum half-life longer than 2 h. Gd4-TESMA accumulates specifically in atherosclerotic plaques in the ApoE-/- murine model of plaque progression, with 2 h persistence of contrast enhancement. As compared to the monomeric counterpart (Gd-TESMA), the tetrameric Gd4-TESMA probe shows a clear advantage regarding both sensitivity and imaging time window, allowing for a better characterization of atherosclerotic plaques

    Plant-made vaccines in support of the Millennium Development Goals

    Get PDF
    Vaccines are one of the most successful public health achievements of the last century. Systematic immunisation programs have reduced the burden of infectious diseases on a global scale. However, there are limitations to the current technology, which often requires costly infrastructure and long lead times for production. Furthermore, the requirement to keep vaccines within the cold-chain throughout manufacture, transport and storage is often impractical and prohibitively expensive in developing countries—the very regions where vaccines are most needed. In contrast, plant-made vaccines (PMVs) can be produced at a lower cost using basic greenhouse agricultural methods, and do not need to be kept within such narrow temperature ranges. This increases the feasibility of developing countries producing vaccines locally at a small-scale to target the specific needs of the region. Additionally, the ability of plant-production technologies to rapidly produce large quantities of strain-specific vaccine demonstrates their potential use in combating pandemics. PMVs are a proven technology that has the potential to play an important role in increasing global health, both in the context of the 2015 Millennium Development Goals and beyond

    Application of vitrification-derived cryotechniques for long-term storage of poplar and aspen (Populus spp.) germplasm

    Get PDF
    The application of three different vitrification-based freezing strategies for the cryostorage of white poplar (Populus alba L.) and hybrid aspen (P. tremula L. × P. tremuloides Michx.) have been assessed. The PVS2 vitrification protocol was successfully applied to two white poplar in vitro clones stored for more than 6 months in slow-growth conditions (4 °C, in darkness) and showing clear signs of explant etiolation and decay. After 60 min of PVS2 treatment, P. alba L. (cv. Villafranca) explants isolated from axillary buds demonstrated significantly better potential for post-freeze regrowth (64%) compared to those obtained from apical buds (17%). Similarly, a high level of survival (78%) of the frozen hybrid aspen shoot tips was recorded following the application of the same technique. Using the encapsulation-vitrification procedure, no toxic effects of the PVS2 treatment were noticed after 120 min exposure, however none of the cryopreserved (poplar and aspen) explants survived after 3 weeks. In contrast, the droplet-vitrification technique appeared to be very efficient in the cryopreservation of white poplar shoot tips, which increases the opportunities for wider application of this method in other woody species.

    Heavy metals and woody plants - biotechnologies for phytoremediation

    No full text
    Soil contamination by heavy metals is among the most serious danger for the environment, and new methods for its containment and removal are claimed, in particular for agricultural soils. Phytoremediation is an emerging, potentially effective technology applicable to restoration of contaminated soils and waters. Besides hyperaccumulator herbaceous plants, several woody species are now considered of interest to this aim. Many woody plants are fast growing, have deep roots, produce abundant biomass, are easy to harvest, and several species revealed some capacity to tolerate and accumulate heavy metals. Biotechnologies are now available for investigating this potential and enlarge the possibilities of exploitation of trees for remediation. The use of in vitro cultures, the role of bacteria and mychorrhizas, the powerful tool of genetic engineering, are some of the aspects focused in this paper that open prospects of global relevance for a better understanding of the processes related to the uptake of heavy metals by woody plants. In recent years significant progress has been made in identifying native plants and developing genetically modified tree plants for the remediation of heavy-metal polluted environment. Despite the intensive research developed in the last years, few field trials demonstrated the feasibility of the approach described, therefore much efforts should be addressed to this goal
    corecore