27,230 research outputs found
A Bayesian estimate of the CMB-large-scale structure cross-correlation
Evidences for late-time acceleration of the Universe are provided by multiple
probes, such as Type Ia supernovae, the cosmic microwave background (CMB) and
large-scale structure (LSS). In this work, we focus on the integrated
Sachs--Wolfe (ISW) effect, i.e., secondary CMB fluctuations generated by
evolving gravitational potentials due to the transition between, e.g., the
matter and dark energy (DE) dominated phases. Therefore, assuming a flat
universe, DE properties can be inferred from ISW detections. We present a
Bayesian approach to compute the CMB--LSS cross-correlation signal. The method
is based on the estimate of the likelihood for measuring a combined set
consisting of a CMB temperature and a galaxy contrast maps, provided that we
have some information on the statistical properties of the fluctuations
affecting these maps. The likelihood is estimated by a sampling algorithm,
therefore avoiding the computationally demanding techniques of direct
evaluation in either pixel or harmonic space. As local tracers of the matter
distribution at large scales, we used the Two Micron All Sky Survey (2MASS)
galaxy catalog and, for the CMB temperature fluctuations, the ninth-year data
release of the Wilkinson Microwave Anisotropy Probe (WMAP9). The results show a
dominance of cosmic variance over the weak recovered signal, due mainly to the
shallowness of the catalog used, with systematics associated with the sampling
algorithm playing a secondary role as sources of uncertainty. When combined
with other complementary probes, the method presented in this paper is expected
to be a useful tool to late-time acceleration studies in cosmology.Comment: 21 pages, 15 figures, 4 tables. We extended the previous analyses
including WMAP9 Q, V and W channels, besides the ILC map. Updated to match
accepted ApJ versio
Spin-polarized transport in ferromagnetic multilayered semiconductor nanostructures
The occurrence of inhomogeneous spin-density distribution in multilayered
ferromagnetic diluted magnetic semiconductor nanostructures leads to strong
dependence of the spin-polarized transport properties on these systems. The
spin-dependent mobility, conductivity and resistivity in
(Ga,Mn)As/GaAs,(Ga,Mn)N/GaN, and (Si,Mn)/Si multilayers are calculated as a
function of temperature, scaled by the average magnetization of the diluted
magnetic semiconductor layers. An increase of the resistivity near the
transition temperature is obtained. We observed that the spin-polarized
transport properties changes strongly among the three materials.Comment: 3 pages, 4 figure
An accurate formula for the period of a simple pendulum oscillating beyond the small-angle regime
A simple approximation formula is derived here for the dependence of the
period of a simple pendulum on amplitude that only requires a pocket calculator
and furnishes an error of less than 0.25% with respect to the exact period. It
is shown that this formula describes the increase of the pendulum period with
amplitude better than other simple formulas found in literature. A good
agreement with experimental data for a low air-resistance pendulum is also
verified and it suggests, together with the current availability/precision of
timers and detectors, that the proposed formula is useful for extending the
pendulum experiment beyond the usual small-angle oscillations.Comment: 15 pages and 4 figures. to appear in American Journal of Physic
Controlling chaotic transport in a Hamiltonian model of interest to magnetized plasmas
We present a technique to control chaos in Hamiltonian systems which are
close to integrable. By adding a small and simple control term to the
perturbation, the system becomes more regular than the original one. We apply
this technique to a model that reproduces turbulent ExB drift and show
numerically that the control is able to drastically reduce chaotic transport
Investigating annual and monthly trends in precipitation structure: an overview across Portugal
This work investigates recent changes in precipitation patterns manifested in long annual and monthly precipitation time series recorded in Portugal. The dataset comprises records from 14 meteorological stations scattered over mainland Portugal and the Portuguese North Atlantic Islands of Madeira and Azores; some of the time series date back to the 19th century. The data were tested for trends using the Mann-Kendall non-parametric test and Sen's non-parametric method, searching both for full monotonic trends over the record period and for partial trends. Results provide no evidence for rejecting the null hypothesis of no trend in annual precipitation, when a monotonic linear model was used. Nevertheless, the analyses of 50 years' moving averages showed an increase over time, in the recent past, for many of the series in mainland Portugal and the Islands. For the longest time series this behaviour was preceded by a decrease over time. The analyses of partial trends in the time series suggested a sequence of alternately decreasing and increasing trends in annual and monthly precipitation, which are sometimes statistically significant. The trend changing points were identified
Cosmological constant constraints from observation-derived energy condition bounds and their application to bimetric massive gravity
Among the various possibilities to probe the theory behind the recent
accelerated expansion of the universe, the energy conditions (ECs) are of
particular interest, since it is possible to confront and constrain the many
models, including different theories of gravity, with observational data. In
this context, we use the ECs to probe any alternative theory whose extra term
acts as a cosmological constant. For this purpose, we apply a model-independent
approach to reconstruct the recent expansion of the universe. Using Type Ia
supernova, baryon acoustic oscillations and cosmic-chronometer data, we perform
a Markov Chain Monte Carlo analysis to put constraints on the effective
cosmological constant . By imposing that the cosmological
constant is the only component that possibly violates the ECs, we derive lower
and upper bounds for its value. For instance, we obtain that and within,
respectively, and confidence levels. In addition, about
30\% of the posterior distribution is incompatible with a cosmological
constant, showing that this method can potentially rule it out as a mechanism
for the accelerated expansion. We also study the consequence of these
constraints for two particular formulations of the bimetric massive gravity.
Namely, we consider the Visser's theory and the Hassan and Roses's massive
gravity by choosing a background metric such that both theories mimic General
Relativity with a cosmological constant. Using the
observational bounds along with the upper bounds on the graviton mass we obtain
constraints on the parameter spaces of both theories.Comment: 11 pages, 4 figures, 1 tabl
- …