265 research outputs found

    A Statistical Mechanical Load Balancer for the Web

    Full text link
    The maximum entropy principle from statistical mechanics states that a closed system attains an equilibrium distribution that maximizes its entropy. We first show that for graphs with fixed number of edges one can define a stochastic edge dynamic that can serve as an effective thermalization scheme, and hence, the underlying graphs are expected to attain their maximum-entropy states, which turn out to be Erdos-Renyi (ER) random graphs. We next show that (i) a rate-equation based analysis of node degree distribution does indeed confirm the maximum-entropy principle, and (ii) the edge dynamic can be effectively implemented using short random walks on the underlying graphs, leading to a local algorithm for the generation of ER random graphs. The resulting statistical mechanical system can be adapted to provide a distributed and local (i.e., without any centralized monitoring) mechanism for load balancing, which can have a significant impact in increasing the efficiency and utilization of both the Internet (e.g., efficient web mirroring), and large-scale computing infrastructure (e.g., cluster and grid computing).Comment: 11 Pages, 5 Postscript figures; added references, expanded on protocol discussio

    Trend-based analysis of a population model of the AKAP scaffold protein

    Get PDF
    We formalise a continuous-time Markov chain with multi-dimensional discrete state space model of the AKAP scaffold protein as a crosstalk mediator between two biochemical signalling pathways. The analysis by temporal properties of the AKAP model requires reasoning about whether the counts of individuals of the same type (species) are increasing or decreasing. For this purpose we propose the concept of stochastic trends based on formulating the probabilities of transitions that increase (resp. decrease) the counts of individuals of the same type, and express these probabilities as formulae such that the state space of the model is not altered. We define a number of stochastic trend formulae (e.g. weakly increasing, strictly increasing, weakly decreasing, etc.) and use them to extend the set of state formulae of Continuous Stochastic Logic. We show how stochastic trends can be implemented in a guarded-command style specification language for transition systems. We illustrate the application of stochastic trends with numerous small examples and then we analyse the AKAP model in order to characterise and show causality and pulsating behaviours in this biochemical system

    Extracting Message Inter-Departure Time Distributions from the Human Electroencephalogram

    Get PDF
    The complex connectivity of the cerebral cortex is a topic of much study, yet the link between structure and function is still unclear. The processing capacity and throughput of information at individual brain regions remains an open question and one that could potentially bridge these two aspects of neural organization. The rate at which information is emitted from different nodes in the network and how this output process changes under different external conditions are general questions that are not unique to neuroscience, but are of interest in multiple classes of telecommunication networks. In the present study we show how some of these questions may be addressed using tools from telecommunications research. An important system statistic for modeling and performance evaluation of distributed communication systems is the time between successive departures of units of information at each node in the network. We describe a method to extract and fully characterize the distribution of such inter-departure times from the resting-state electroencephalogram (EEG). We show that inter-departure times are well fitted by the two-parameter Gamma distribution. Moreover, they are not spatially or neurophysiologically trivial and instead are regionally specific and sensitive to the presence of sensory input. In both the eyes-closed and eyes-open conditions, inter-departure time distributions were more dispersed over posterior parietal channels, close to regions which are known to have the most dense structural connectivity. The biggest differences between the two conditions were observed at occipital sites, where inter-departure times were significantly more variable in the eyes-open condition. Together, these results suggest that message departure times are indicative of network traffic and capture a novel facet of neural activity

    BOB-RED queue management for IEEE 802.15.4 wireless sensor networks

    Get PDF
    This study is aimed at exploring why many economists propose a transfer scheme and debt mutualisation for the Eurozone. This would equip the Eurozone with better tools to deal with an economic shock, like the 2010-2012 sovereign debt crisis, thus making it more financially stable. After the theoretical presentation, the study presents a unique institutional design with an EU Treasury that manages debt mutualisation and a transfer scheme as well as other competences that address other present economic challenges. Crucial to the study are the issues of moral hazard and adverse selection that arise when thinking of European economic integration.L’objectiu del treball és explorar la raó per la qual molts economistes proposen un sistema de transferències fiscals i la mutualització del deute a l’Eurozona. Així se la dotaria amb eines més efectives per pal·liar un xoc econòmic, com la crisi del deute sobirà del 2010-2012. A continuació, es presenta un disseny institucional únic d’un Tresor de l’Euro que gestionaria les competències esmentades (i d’altres) per combatre alguns dels reptes econòmics actuals. El risc moral i de selecció adversa, qüestions que sorgeixen en pensar la drecera que ha de prendre la integració econòmica Europea, són cabdals per aquest estudi

    Auxiliary variables for Bayesian inference in multi-class queueing networks

    Get PDF
    Queueing networks describe complex stochastic systems of both theoretical and practical interest. They provide the means to assess alterations, diagnose poor performance and evaluate robustness across sets of interconnected resources. In the present paper, we focus on the underlying continuous-time Markov chains induced by these networks, and we present a flexible method for drawing parameter inference in multi-class Markovian cases with switching and different service disciplines. The approach is directed towards the inferential problem with missing data, where transition paths of individual tasks among the queues are often unknown. The paper introduces a slice sampling technique with mappings to the measurable space of task transitions between the service stations. This can address time and tractability issues in computational procedures, handle prior system knowledge and overcome common restrictions on service rates across existing inferential frameworks. Finally, the proposed algorithm is validated on synthetic data and applied to a real data set, obtained from a service delivery tasking tool implemented in two university hospitals

    Performance analysis of priority queueing systems in discrete time

    Get PDF
    The integration of different types of traffic in packet-based networks spawns the need for traffic differentiation. In this tutorial paper, we present some analytical techniques to tackle discrete-time queueing systems with priority scheduling. We investigate both preemptive (resume and repeat) and non-preemptive priority scheduling disciplines. Two classes of traffic are considered, high-priority and low-priority traffic, which both generate variable-length packets. A probability generating functions approach leads to performance measures such as moments of system contents and packet delays of both classes

    A deep cut ellipsoid algorithm for convex programming

    Get PDF
    This paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex programming problems. In each step the algorithm does not require more computational effort to construct these deep cuts than its corresponding central cut version. Rules that prevent some of the numerical instabilities and theoretical drawbacks usually associated with the algorithm are also provided. Moreover, for a large class of convex programs a simple proof of its rate of convergence is given and the relation with previously known results is discussed. Finally some computational results of the deep and central cut version of the algorithm applied to a min—max stochastic queue location problem are reported
    • …
    corecore