95,643 research outputs found
Spacetime Supersymmetry in a nontrivial NS-NS Superstring Background
In this paper we consider superstring propagation in a nontrivial NS-NS
background. We deform the world sheet stress tensor and supercurrent with an
infinitesimal B_{\mu\nu} field. We construct the gauge-covariant super-Poincare
generators in this background and show that the B_{\mu\nu} field spontaneously
breaks spacetime supersymmetry. We find that the gauge-covariant spacetime
momenta cease to commute with each other and with the spacetime supercharges.
We construct a set of "magnetic" super-Poincare generators that are conserved
for constant field strength H_{\mu\nu\lambda}, and show that these generators
obey a "magnetic" extension of the ordinary supersymmetry algebra.Comment: 13 pages, Latex. Published versio
Criticality and Condensation in a Non-Conserving Zero Range Process
The Zero-Range Process, in which particles hop between sites on a lattice
under conserving dynamics, is a prototypical model for studying real-space
condensation. Within this model the system is critical only at the transition
point. Here we consider a non-conserving Zero-Range Process which is shown to
exhibit generic critical phases which exist in a range of creation and
annihilation parameters. The model also exhibits phases characterised by
mesocondensates each of which contains a subextensive number of particles. A
detailed phase diagram, delineating the various phases, is derived.Comment: 15 pages, 4 figure, published versi
Factorised steady states for multi-species mass transfer models
A general class of mass transport models with Q species of conserved mass is
considered. The models are defined on a lattice with parallel discrete time
update rules. For one-dimensional, totally asymmetric dynamics we derive
necessary and sufficient conditions on the mass transfer dynamics under which
the steady state factorises. We generalise the model to mass transfer on
arbitrary lattices and present sufficient conditions for factorisation. In both
cases, explicit results for random sequential update and continuous time limits
are given.Comment: 11 page
Hard rod gas with long-range interactions: Exact predictions for hydrodynamic properties of continuum systems from discrete models
One-dimensional hard rod gases are explicitly constructed as the limits of
discrete systems: exclusion processes involving particles of arbitrary length.
Those continuum many-body systems in general do not exhibit the same
hydrodynamic properties as the underlying discrete models. Considering as
examples a hard rod gas with additional long-range interaction and the
generalized asymmetric exclusion process for extended particles (-ASEP),
it is shown how a correspondence between continuous and discrete systems must
be established instead. This opens up a new possibility to exactly predict the
hydrodynamic behaviour of this continuum system under Eulerian scaling by
solving its discrete counterpart with analytical or numerical tools. As an
illustration, simulations of the totally asymmetric exclusion process
(-TASEP) are compared to analytical solutions of the model and applied to
the corresponding hard rod gas. The case of short-range interaction is treated
separately.Comment: 19 pages, 8 figure
Laser action generated within a light pipe: A concept
Laser light could be generated within light pipe itself, thereby eliminating coupling losses. Theoretical calculations have shown feasibility of light-pipe laser propagating in circularly-polarized TE mode. It is predicted that fiber-optic distributed-feedback laser would have gain on order of 25 dB
Recommended from our members
Relationships between estimated autozygosity and complex traits in the UK Biobank
<div><p>Inbreeding increases the risk of certain Mendelian disorders in humans but may also reduce fitness through its effects on complex traits and diseases. Such inbreeding depression is thought to occur due to increased homozygosity at causal variants that are recessive with respect to fitness. Until recently it has been difficult to amass large enough sample sizes to investigate the effects of inbreeding depression on complex traits using genome-wide single nucleotide polymorphism (SNP) data in population-based samples. Further, it is difficult to infer causation in analyses that relate degree of inbreeding to complex traits because confounding variables (e.g., education) may influence both the likelihood for parents to outbreed and offspring trait values. The present study used runs of homozygosity in genome-wide SNP data in up to 400,000 individuals in the UK Biobank to estimate the proportion of the autosome that exists in autozygous tracts—stretches of the genome which are identical due to a shared common ancestor. After multiple testing corrections and controlling for possible sociodemographic confounders, we found significant relationships in the predicted direction between estimated autozygosity and three of the 26 traits we investigated: age at first sexual intercourse, fluid intelligence, and forced expiratory volume in 1 second. Our findings corroborate those of several published studies. These results may imply that these traits have been associated with Darwinian fitness over evolutionary time. However, some of the autozygosity-trait relationships were attenuated after controlling for background sociodemographic characteristics, suggesting that alternative explanations for these associations have not been eliminated. Care needs to be taken in the design and interpretation of ROH studies in order to glean reliable information about the genetic architecture and evolutionary history of complex traits.</p></div
Recommended from our members
Effective engagement of conservation scientists with decision-makers
This chapter offers advice on how the conservation science community can effectively engage with decision-makers. The rationales for why we, as scientists, need to do this have been widely discussed in the literature. Often, the reasons offered are normative, pragmatic, or instrumental (de Vente, 2016); in other words, there is a belief that engaging with decision-makers leads to better informed, more acceptable decisions. Indeed, better engagement may lead to the greater uptake of evidence for conservation decisions, something which some scholars argue is a priority for effective management (e.g. Gardner et al., 2018; Sutherland and Wordley, 2017)
An Infinite Dimensional Symmetry Algebra in String Theory
Symmetry transformations of the space-time fields of string theory are
generated by certain similarity transformations of the stress-tensor of the
associated conformal field theories. This observation is complicated by the
fact that, as we explain, many of the operators we habitually use in string
theory (such as vertices and currents) have ill-defined commutators. However,
we identify an infinite-dimensional subalgebra whose commutators are not
singular, and explicitly calculate its structure constants. This constitutes a
subalgebra of the gauge symmetry of string theory, although it may act on
auxiliary as well as propagating fields. We term this object a {\it weighted
tensor algebra}, and, while it appears to be a distant cousin of the
-algebras, it has not, to our knowledge, appeared in the literature before.Comment: 14 pages, Plain TeX, report RU93-8, CTP-TAMU-2/94, CERN-TH.7022/9
Nonequilibrium phase transition in a non integrable zero-range process
The present work is an endeavour to determine analytically features of the
stationary measure of a non-integrable zero-range process, and to investigate
the possible existence of phase transitions for such a nonequilibrium model.
The rates defining the model do not satisfy the constraints necessary for the
stationary measure to be a product measure. Even in the absence of a drive,
detailed balance with respect to this measure is violated. Analytical and
numerical investigations on the complete graph demonstrate the existence of a
first-order phase transition between a fluid phase and a condensed phase, where
a single site has macroscopic occupation. The transition is sudden from an
imbalanced fluid where both species have densities larger than the critical
density, to a critical neutral fluid and an imbalanced condensate
- …