90 research outputs found

    Development of a new machine system for the forming of micro-sheet-products

    Get PDF
    Most of the developed micro-forming machines were based on standalone concepts which do not support efficient integration to make them fully automated and integrated. At present, material feeding in micro-forming is not of sufficient precision and reliability for high throughput manufacturing applications. Precise feeding is necessary to ensure that micro-parts can be produced with sufficient accuracy, especially in multi-stage forming, while high-speed feeding is a must to meet the production-rate requirements. Therefore, design of a new high-precision and high-speed feeder for micro-forming is proposed. Several possible approaches are examined with a view to establishing feasible concepts. Based on the investigation, several concepts for thin sheet-metal feeding for micro-forming are generated, they being argued and assessed with applicable loads and forces analysis. These form a basis of designing a new feeder

    A Mathematical Model to Optimize the Neoadjuvant Chemotherapy Treatment Sequence for Triple-Negative Locally Advanced Breast Cancer

    Get PDF
    Background: Triple-negative locally advanced breast cancer is an aggressive tumor type. Currently, the standard sequence treatment is applied, administering anthracyclines first and then a taxane plus platinum. Clinical studies for all possible treatment combinations are not practical or affordable, but mathematical modeling of the active mitotic cell population is possible. Our study aims to show the regions with the tumor’s most substantial cellular population variation by utilizing all possible values of the parameters () that define the annihilatory drug capacity according to the proposed treatment. Method: A piecewise linear mathematical model was used to analyze the cell population growth by applying four treatments: standard sequences of 21 days (SS21) and 14 days (SS14), administering anthracyclines first, followed by a taxane plus platinum, and inverted sequences of 21 days (IS21) and 14 days (IS14), administering a taxane plus platinum first then anthracyclines. Results: The simulation showed a higher effect of IS14 over SS14 when the rate of drug resistance was larger in the cell population during DNA synthesis (G1 and S) compared to cells in mitosis (G2 and M). However, if the proportion of resistant cells in both populations was equivalent, then treatments did not differ. Conclusions: When resistance is considerable, IS14 is more efficient than SS14, reducing the tumor population to a minimum

    Vacuum decay in quantum field theory

    Get PDF
    We study the contribution to vacuum decay in field theory due to the interaction between the long and short-wavelength modes of the field. The field model considered consists of a scalar field of mass MM with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behaviour is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M1M^{-1}. This effect makes a substantial contribution to the total decay rate.Comment: 27 pages, RevTeX, 1 figure (uses epsf.sty

    Vacuum decay in quantum field theory

    Get PDF
    We study the contribution to vacuum decay in field theory due to the interaction between the long and short-wavelength modes of the field. The field model considered consists of a scalar field of mass MM with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behaviour is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M1M^{-1}. This effect makes a substantial contribution to the total decay rate.Comment: 27 pages, RevTeX, 1 figure (uses epsf.sty

    Equilibrium Selection in Sequential Games with Imperfect Information

    Full text link
    Games with imperfect information often feature multiple equilibria, which depend on beliefs off the equilibrium path. Standard selection criteria such as passive beliefs, symmetric beliefs or wary beliefs rest on ad hoc restrictions on beliefs. We propose a new selection criterion that imposes no restrictions on beliefs: we select the action profile that is supported in equilibrium by the largest set of beliefs. We conduct experiments to test the predictive power of the existing and our novel selection criteria in two applications: a game of vertical multi-lateral contracting, and a game of electoral competition. We find that our selection criterion outperforms the other selection criteria

    In vitro evaluation of antibiotics' combinations for empirical therapy of suspected methicillin resistant Staphylococcus aureus severe respiratory infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methicillin resistant <it>Staphylococcus aureus </it>(MRSA) is an increasingly common cause of nosocomial infections, causing severe morbidity and mortality worldwide, and accounting in some hospitals for more than 50% of all <it>S. aureus </it>diseases. Treatment of infections caused by resistant bacterial pathogens mainly relies on two therapeutic modalities: development of new antimicrobials and use of combinations of available antibiotics.</p> <p>Combinations of antibiotics used in the empiric treatment of infections with suspected methicillin resistant <it>Staphylococcus aureus </it>etiology were investigated.</p> <p>Methods</p> <p>Double (vancomycin or teicoplanin with either levofloxacin or cefotaxime) and triple (vancomycin or teicoplanin + levofloxacin + one among amikacin, ceftazidime, cefepime, imipenem, piperacillin/tazobactam) combinations were evaluated by means of checkerboard assay and time kill curves. Mutational rates of single and combined drugs at antimicrobial concentrations equal to the resistance breakpoints were also calculated.</p> <p>Results</p> <p>Vancomycin or teicoplanin + levofloxacin showed synergy in 16/50 and in 9/50 strains respectively, while vancomycin or teicoplanin + cefotaxime resulted synergic for 43/50 and 23/50 strains, respectively. Triple combinations, involving teicoplanin, levofloxacin and ceftazidime or piperacillin/tazobactam gave synergy in 20/25 strains. Teicoplanin + levofloxacin gave synergy in triple combinations more frequently than vancomycin + levofloxacin.</p> <p>For single antibiotics, mutational frequencies ranged between 10<sup>-5 </sup>and <10<sup>-9 </sup>for levofloxacin, cefotaxime, amikacin and imipenem, and <10<sup>-9 </sup>for vancomycin and teicoplanin. When tested in combinations, mutational frequencies fell below 10<sup>-9 </sup>for all the combinations.</p> <p>Conclusion</p> <p><it>In vitro </it>evidence of synergy between glycopeptides, fluoroquinolones (levofloxacin) and β-lactams and of reduction of mutational frequencies by combinations are suggestive for a potential role in empirical therapy of severe pneumonia with suspected MRSA etiology.</p
    corecore