301 research outputs found

    Functional approach to the electromagnetic response function: the Longitudinal Channel

    Get PDF
    In this paper we address the (charge) longitudinal electromagnetic response for a homogeneous system of nucleons interacting via meson exchanges in the functional framework. This approach warrants consistency if the calculation is carried on order-by-order in the mesonic loop expansion with RPA-dressed mesonic propagators. At the 1-loop order and considering pion, rho and omega exchanges we obtain a quenching of the response, in line with the experimental results.Comment: RevTeX, 18 figures available upon request - to be published in Physical Review

    Analysis and assessment of a knowledge based smart city architecture providing service APIs

    Get PDF
    Abstract The main technical issues regarding smart city solutions are related to data gathering, aggregation, reasoning, data analytics, access, and service delivering via Smart City APIs (Application Program Interfaces). Different kinds of Smart City APIs enable smart city services and applications, while their effectiveness depends on the architectural solutions to pass from data to services for city users and operators, exploiting data analytics, and presenting services via APIs. Therefore, there is a strong activity on defining smart city architectures to cope with this complexity, putting in place a significant range of different kinds of services and processes. In this paper, the work performed in the context of Sii-Mobility smart city project on defining a smart city architecture addressing a wide range of processes and data is presented. To this end, comparisons of the state of the art solutions of smart city architectures for data aggregation and for Smart City API are presented by putting in evidence the usage semantic ontologies and knowledge base in the data aggregation in the production of smart services. The solution proposed aggregate and re-conciliate data (open and private, static and real time) by using reasoning/smart algorithms for enabling sophisticated service delivering via Smart City API. The work presented has been developed in the context of the Sii-Mobility national smart city project on mobility and transport integrated with smart city services with the aim of reaching a more sustainable mobility and transport systems. Sii-Mobility is grounded on Km4City ontology and tools for smart city data aggregation, analytics support and service production exploiting smart city API. To this end, Sii-Mobility/Km4City APIs have been compared to the state of the art solutions. Moreover, the proposed architecture has been assessed in terms of performance, computational and network costs in terms of measures that can be easily performed on private cloud on premise. The computational costs and workloads of the data ingestion and data analytics processes have been assessed to identify suitable measures to estimate needed resources. Finally, the API consumption related data in the recent period are presented

    Singular Structure and Enhanced Friedel Oscillations in the Two-Dimensional Electron Gas

    Full text link
    We calculate the leading order corrections (in rsr_s) to the static polarization Π(q,0,)\Pi^{*}(q,0,), with dynamically screened interactions, for the two-dimensional electron gas. The corresponding diagrams all exhibit singular logarithmic behavior in their derivatives at q=2kFq=2 k_F and provide significant enhancement to the proper polarization particularly at low densities. At a density of rs=3r_s=3, the contribution from the leading order {\em fluctuational} diagrams exceeds both the zeroth order (Lindhard) response and the self-energy and exchange contributions. We comment on the importance of these diagrams in two-dimensions and make comparisons to an equivalent three-dimensional electron gas; we also consider the impact these finding have on Π(q,0)\Pi^{*}(q,0) computed to all orders in perturbation theory

    On the analytic solution of the pairing problem: one pair in many levels

    Get PDF
    We search for approximate, but analytic solutions of the pairing problem for one pair of nucleons in many levels of a potential well. For the collective energy a general formula, independent of the details of the single particle spectrum, is given in both the strong and weak coupling regimes. Next the displacements of the solutions trapped in between the single particle levels with respect to the unperturbed energies are explored: their dependence upon a suitably defined quantum number is found to undergo a transition between two different regimes.Comment: 30 pages, AMS Latex, 8 figures. Submitted to Phys. Rev.

    Spin projected unrestricted Hartree-Fock ground states for harmonic quantum dots

    Full text link
    We report results for the ground state energies and wave functions obtained by projecting spatially unrestricted Hartree Fock states to eigenstates of the total spin and the angular momentum for harmonic quantum dots with N12N\leq 12 interacting electrons including a magnetic field states with the correct spatial and spin symmetries have lower energies than those obtained by the unrestricted method. The chemical potential as a function of a perpendicular magnetic field is obtained. Signature of an intrinsic spin blockade effect is found.Comment: 12 pages, 5 tables, 10 figures, submitted to Phys. Rev.

    Inclusive versus Exclusive EM Processes in Relativistic Nuclear Systems

    Full text link
    Connections are explored between exclusive and inclusive electron scattering within the framework of the relativistic plane-wave impulse approximation, beginning with an analysis of the model-independent kinematical constraints to be found in the missing energy--missing momentum plane. From the interplay between these constraints and the spectral function basic features of the exclusive and inclusive nuclear responses are seen to arise. In particular, the responses of the relativistic Fermi gas and of a specific hybrid model with confined nucleons in the initial state are compared in this work. As expected, the exclusive responses are significantly different in the two models, whereas the inclusive ones are rather similar. By extending previous work on the relativistic Fermi gas, a reduced response is introduced for the hybrid model such that it fulfills the Coulomb and the higher-power energy-weighted sum rules. While incorporating specific classes of off-shellness for the struck nucleons, it is found that the reducing factor required is largely model-independent and, as such, yields a reduced response that is useful for extracting the Coulomb sum rule from experimental data. Finally, guided by the difference between the energy-weighted sum rules of the two models, a version of the relativistic Fermi gas is devised which has the 0th^{\rm th}, 1st^{\rm st} and 2nd^{\rm nd} moments of the charge response which agree rather well with those of the hybrid model: this version thus incorporates {\em a priori} the binding and confinement effects of the stuck nucleons while retaining the simplicity of the original Fermi gas.Comment: LaTex file with 15 .ps figure

    High fidelity numerical fracture mechanics assisted by RBF mesh morphing

    Get PDF
    The study and design of cyclically loaded structures cannot neglect the evaluation of their fatigue behavior. Today numerical prediction tools allow adopting, in various industrial fields, refined and consolidated procedures for the assessment of cracked parts through analyses based on fracture mechanics. An high level of detail can be obtained through the use of well consolidated FEM methods, allowing an accurate and reliable calculation of the flaw Stress Intensity Factor (SIF) and its resulting prediction in terms of crack propagation. A challenging step for this computational workflow remains, however, the generation and update of the computational grid during crack evolution. It is in this context that radial basis functions (RBF) mesh morphing is emerging as a viable solution to replace the complex and time-consuming remeshing operation. The flaw front is updated, according to its propagation, by automatically deforming the numerical grid obtaining an evolutionary workflow suitable to be used for industrially-sized numerical meshes (many millions of nodes). A review of applications, obtained by exploiting FEA (Ansys Mechanical) and mesh morphing (RBF Morph) state of-the-art tools, is presented in this work. At first the proposed workflow is applied on a circular notched bar with a defect controlled by a two-parameters evolution. The same approach is then refined and demonstrated for a Multi Degree of Freedom (MDoF) case on the same geometry and on the vacuum vessel port stub from the fusion nuclear reactor Iter

    Equivalence between local Fermi gas and shell models in inclusive muon capture from nuclei

    Get PDF
    Motivated by recent studies of inclusive neutrino nucleus processes and muon capture within a correlated local Fermi gas model (LFG), we discuss the relevance of nuclear finite size effects in these reactions at low energy, in particular for muon capture. To disentangle these effects from others coming from the reaction dynamics we employ here a simple uncorrelated shell model that embodies the typical finite size content of the problem. The integrated decay widths of muon atoms calculated with this shell model are then compared for several nuclei with those obtained within the uncorrelated LFG, using in both models exactly the same theoretical ingredients and parameters. We find that the two predictions are in quite good agreement, within 1--7%, when the shell model density and the correct energy balance is used as input in the LFG calculation. The present study indicates that, despite the low excitation energies involved in the reaction, integrated inclusive observables, like the total muon capture width, are quite independent of the fine details of the nuclear wave functions.Comment: 11 pages, 8 figures. Final version to be published in EPJ

    Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria

    Get PDF
    Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defects, bone resorption, lipodystrophy and accelerated ageing. Knowledge of the mechanism underlying prelamin A turnover is critical for the development of clinically effective protein inhibitors that can avoid accumulation to toxic levels without impairing lamin A/C expression, which is essential for normal biological functions. Little is known about specific molecules that may target farnesylated prelamin A to elicit protein degradation. Here, we report the discovery of rapamycin as a novel inhibitor of progerin, which dramatically and selectively decreases protein levels through a mechanism involving autophagic degradation. Rapamycin treatment of progeria cells lowers progerin, as well as wild-type prelamin A levels, and rescues the chromatin phenotype of cultured fibroblasts, including histone methylation status and BAF and LAP2α distribution patterns. Importantly, rapamycin treatment does not affect lamin C protein levels, but increases the relative expression of the prelamin A endoprotease ZMPSTE24. Thus, rapamycin, an antibiotic belonging to the class of macrolides, previously found to increase longevity in mouse models, can serve as a therapeutic tool, to eliminate progerin, avoid farnesylated prelamin A accumulation, and restore chromatin dynamics in progeroid laminopathies

    Superscaling in inclusive electron-nucleus scattering

    Get PDF
    We investigate the degree to which the scaling functions F(ψ)F(\psi') derived from cross sections for inclusive electron-nucleus quasi-elastic scattering define the same function for different nuclei. In the region where the scaling variable ψ<0\psi'< 0, we find that this superscaling is experimentally realized to a high degree.Comment: Corrected previously mislabeled figures and cross references; 9 pages, 4 color figures, using BoxedEPS and REVTeX; email correspondence to [email protected]
    corecore