539 research outputs found

    Improvements on analytic modelling of stellar spots

    Full text link
    In this work we present the solution of the stellar spot problem using the Kelvin-Stokes theorem. Our result is applicable for any given location and dimension of the spots on the stellar surface. We present explicitely the result up to the second degree in the limb darkening law. This technique can be used to calculate very efficiently mutual photometric effects produced by eclipsing bodies occulting stellar spots and to construct complex spot shapes.Comment: Resubmitted to MNRAS after accounting for minor comments of second review, 9 pages, 5 figures, software available at http://eduscisoft.com/KSINT

    SOAP-T: A tool to study the light-curve and radial velocity of a system with a transiting planet and a rotating spotted star

    Full text link
    We present an improved version of SOAP (Boisse et al. 2012) named "SOAP-T", which can generate the radial velocity variations and light-curves for systems consisting of a rotating spotted star with a transiting planet. This tool can be used to study the anomalies inside transit light-curves and the Rossiter-McLaughlin effect, to better constrain the orbital configuration and properties of planetary systems and active zones of their host stars. Tests of the code are presented to illustrate its performance and to validate its capability when compared with analytical models and real data. Finally, we apply SOAP-T to the active star, HAT-P-11, observed by the NASA Kepler space telescope and use this system to discuss the capability of this tool in analyzing light-curves for the cases where the transiting planet overlaps with the star's spots.Comment: 9 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    A hot horizontal branch star with a close K-type main-sequence companion

    Get PDF
    Dynamical interactions in binary systems are thought to play a major role in the formation of extreme horizontal branch stars (EHBs) in the Galactic field. However, it is still unclear if the same mechanisms are at work in globular clusters, where EHBs are predominantly single stars. Here we report on the discovery of a unique close binary system (period ~1.61 days) in the globular cluster NGC6752, comprising an EHB and a main-sequence companion of 0.63+-0.05 Msun. Such a system has no counterpart among nearly two hundred known EHB binaries in the Galactic field. Its discovery suggests that either field studies are incomplete, missing this type of systems possibly because of selection effects, or that a particular EHB formation mechanism is active in clusters but not in the field

    Further constraints on the optical transmission spectrum of HAT-P-1b

    Get PDF
    We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting Hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo (TNG). Our measurements imply an average planet to star radius ratio equal to Rp/R\rm R_p/R_{\star}=(0.1159±\pm0.0005). This result is consistent with the value obtained from recent near infrared measurements of this object but differs from previously reported optical measurements being lower by around 4.4 exoplanet scale heights. Analyzing the data over 5 different spectral bins 600\AA\, wide we observed a single peaked spectrum (3.7 σ\rm\sigma level) with a blue cut-off corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the region in between 6180-7400\AA. We also infer that the width of the broad absorption wings due to alkali metals is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution from an optical absorber than previously reported.Comment: Accepted by Ap

    A new analysis of the WASP-3 system: no evidence for an additional companion

    Full text link
    In this work we investigate the problem concerning the presence of additional bodies gravitationally bounded with the WASP-3 system. We present eight new transits of this planet and analyse all the photometric and radial velocity data published so far. We did not observe significant periodicities in the Fourier spectrum of the observed minus calculated (O-C) transit timing and radial velocity diagrams (the highest peak having false-alarm probabilities of 56 per cent and 31 per cent, respectively) or long-term trends. Combining all the available information, we conclude that the radial velocity and transit timing techniques exclude, at 99 per cent confidence limit, any perturber more massive than M \gtrsim 100 M_Earth with periods up to 10 times the period of the inner planet. We also investigate the possible presence of an exomoon on this system and determined that considering the scatter of the O-C transit timing residuals a coplanar exomoon would likely produce detectable transits. This hypothesis is however apparently ruled out by observations conducted by other researchers. In case the orbit of the moon is not coplanar the accuracy of our transit timing and transit duration measurements prevents any significant statement. Interestingly, on the basis of our reanalysis of SOPHIE data we noted that WASP-3 passed from a less active (log R'_hk=-4.95) to a more active (log R'_hk=-4.8) state during the 3 yr monitoring period spanned by the observations. Despite no clear spot crossing has been reported for this system, this analysis claims for a more intensive monitoring of the activity level of this star in order to understand its impact on photometric and radial velocity measurements.Comment: MNRAS accepted (14/08/2012

    Segmentazione delle serie temporali nell’analisi dei dati: un esempio di applicazione a dati sismo-vulcanici.

    Get PDF
    Il presente report descrive quanto sviluppato dagli autori per l’analisi delle serie temporali utilizzate per il monitoraggio sismo-vulcanico del vulcano Etna. La necessità di ottenere una rappresentazione ridotta delle serie temporali ha portato alla ricerca ed alla implementazione degli algoritmi di segmentazione oggetto del presente lavoro. Le metodologie introdotte nel paragrafo 2, largamente applicate nella disciplina del data mining su serie temporali, costituiscono ad oggi lo stato dell’arte per quanto riguarda le tecniche di approssimazione di serie temporali. In particolare, l’applicazione dell’algoritmo bottom-up ha permesso una compressione elevata dei dati, consentendo quindi una rappresentazione con un numero di punti inferiore rispetto a quello delle serie temporali di partenza. In questo contesto la scelta delle soglie errore, legata indirettamente al numero di segmenti con cui si approssima la serie temporale, è stata scelta in modo empirico. Questa scelta è stata vincolata alla dimensione dei buffer di dati da impiegare per scopi di visualizzazione ed elaborazione. Future implementazioni riguarderanno l’ottimizzazione in linea degli algoritmi Sliding Window in modo da operare in real-time sugli streaming di dati ed ottimizzarne l’archiviazione e la visualizzazione

    New and updated stellar parameters for 90 transit hosts. The effect of the surface gravity

    Full text link
    Context. Precise stellar parameters are crucial in exoplanet research for correctly determining of the planetary parameters. For stars hosting a transiting planet, determining of the planetary mass and radius depends on the stellar mass and radius, which in turn depend on the atmospheric stellar parameters. Different methods can provide different results, which leads to different planet characteristics.}%Spectroscopic surface gravities have shown to be poorly constrained, but the photometry of the transiting planet can provide an independent measurement of the surface gravity. Aims. In this paper, we use a uniform method to spectroscopically derive stellar atmospheric parameters, chemical abundances, stellar masses, and stellar radii for a sample of 90 transit hosts. Surface gravities are also derived photometrically using the stellar density as derived from the light curve. We study the effect of using these different surface gravities on the determination of the chemical abundances and the stellar mass and radius. Methods. A spectroscopic analysis based on Kurucz models in LTE was performed through the MOOG code to derive the atmospheric parameters and the chemical abundances. The photometric surface gravity was determined through isochrone fitting and the use of the stellar density, directly determined from the light curve. Stellar masses and radii are determined through calibration formulae. Results. Spectroscopic and photometric surface gravities differ, but this has very little effect on the precise determination of the stellar mass in our spectroscopic analysis. The stellar radius, and hence the planetary radius, is most affected by the surface gravity discrepancies. For the chemical abundances, the difference is, as expected, only noticable for the abundances derived from analyzing of lines of ionized species.Comment: 12 pages, 6 figures, 5 tables, accepted to A&

    The old and heavy bulge of M31 I. Kinematics and stellar populations

    Full text link
    We present new optical long-slit data along 6 position angles of the bulge region of M31. We derive accurate stellar and gas kinematics reaching 5 arcmin from the center, where the disk light contribution is always less than 30%, and out to 8 arcmin along the major axis, where the disk makes 55% of the total light. We show that the velocity dispersions of McElroy (1983) are severely underestimated (by up to 50 km/s) and previous dynamical models have underestimated the stellar mass of M31's bulge by a factor 2. Moreover, the light-weighted velocity dispersion of the galaxy grows to 166 km/s, thus reducing the discrepancy between the predicted and measured mass of the black hole at the center of M31. The kinematic position angle varies with distance, pointing to triaxiality. We detect gas counterrotation near the bulge minor axis. We measure eight emission-corrected Lick indices. They are approximately constant on circles. We derive the age, metallicity and alpha-element overabundance profiles. Except for the region in the inner arcsecs of the galaxy, the bulge of M31 is uniformly old (>12 Gyr, with many best-fit ages at the model grid limit of 15 Gyr), slightly alpha-elements overabundant ([alpha/Fe]~0.2) and at solar metallicity, in agreement with studies of the resolved stellar components. The predicted u-g, g-r and r-i Sloan color profiles match reasonably well the dust-corrected observations. The stellar populations have approximately radially constant mass-to-light ratios (M/L_R ~ 4-4.5 for a Kroupa IMF), in agreement with stellar dynamical estimates based on our new velocity dispersions. In the inner arcsecs the luminosity-weighted age drops to 4-8 Gyr, while the metallicity increases to above 3 times the solar value.Comment: Accepted for publication in A&

    Evidence for a spectroscopic direct detection of reflected light from 51 Peg b

    Full text link
    The detection of reflected light from an exoplanet is a difficult technical challenge at optical wavelengths. Even though this signal is expected to replicate the stellar signal, not only is it several orders of magnitude fainter, but it is also hidden among the stellar noise. We apply a variant of the cross-correlation technique to HARPS observations of 51 Peg to detect the reflected signal from planet 51 Peg b. Our method makes use of the cross-correlation function of a binary mask with high-resolution spectra to amplify the minute planetary signal that is present in the spectra by a factor proportional to the number of spectral lines when performing the cross correlation. The resulting cross-correlation functions are then normalized by a stellar template to remove the stellar signal. Carefully selected sections of the resulting normalized CCFs are stacked to increase the planetary signal further. The recovered signal allows probing several of the planetary properties, including its real mass and albedo. We detect evidence for the reflected signal from planet 51 Peg b at a significance of 3\sigma_noise. The detection of the signal permits us to infer a real mass of 0.46^+0.06_-0.01 M_Jup (assuming a stellar mass of 1.04\;M_Sun) for the planet and an orbital inclination of 80^+10_-19 degrees. The analysis of the data also allows us to infer a tentative value for the (radius-dependent) geometric albedo of the planet. The results suggest that 51Peg b may be an inflated hot Jupiter with a high albedo (e.g., an albedo of 0.5 yields a radius of 1.9 \pm 0.3 R_Jup for a signal amplitude of 6.0\pm0.4 x 10^-5). We confirm that the method we perfected can be used to retrieve an exoplanet's reflected signal, even with current observing facilities. The advent of next generation of observing facilities will yield new opportunities for this type of technique to probe deeper into exoplanets.Comment: 9 pages, 6 figure
    corecore