134 research outputs found
Statistical Feature Combination for the Evaluation of Game Positions
This article describes an application of three well-known statistical methods
in the field of game-tree search: using a large number of classified Othello
positions, feature weights for evaluation functions with a
game-phase-independent meaning are estimated by means of logistic regression,
Fisher's linear discriminant, and the quadratic discriminant function for
normally distributed features. Thereafter, the playing strengths are compared
by means of tournaments between the resulting versions of a world-class Othello
program. In this application, logistic regression - which is used here for the
first time in the context of game playing - leads to better results than the
other approaches.Comment: See http://www.jair.org/ for any accompanying file
Unified characterisations of resolution hardness measures
Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this paper we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. Our main contribution is a unified game-theoretic characterisation of these measures. As consequences we obtain new relations between the different hardness measures. In particular, we prove a generalised version of Atserias and Dalmau's result on the relation between resolution width and space from [5]
Warm-Start AlphaZero Self-Play Search Enhancements
Recently, AlphaZero has achieved landmark results in deep reinforcement
learning, by providing a single self-play architecture that learned three
different games at super human level. AlphaZero is a large and complicated
system with many parameters, and success requires much compute power and
fine-tuning. Reproducing results in other games is a challenge, and many
researchers are looking for ways to improve results while reducing
computational demands. AlphaZero's design is purely based on self-play and
makes no use of labeled expert data ordomain specific enhancements; it is
designed to learn from scratch. We propose a novel approach to deal with this
cold-start problem by employing simple search enhancements at the beginning
phase of self-play training, namely Rollout, Rapid Action Value Estimate (RAVE)
and dynamically weighted combinations of these with the neural network, and
Rolling Horizon Evolutionary Algorithms (RHEA). Our experiments indicate that
most of these enhancements improve the performance of their baseline player in
three different (small) board games, with especially RAVE based variants
playing strongly
The Syk Kinase SmTK4 of Schistosoma mansoni Is Involved in the Regulation of Spermatogenesis and Oogenesis
The signal transduction protein SmTK4 from Schistosoma mansoni belongs to the family of Syk kinases. In vertebrates, Syk kinases are known to play specialized roles in signaling pathways in cells of the hematopoietic system. Although Syk kinases were identified in some invertebrates, their role in this group of animals has not yet been elucidated. Since SmTK4 is the first Syk kinase from a parasitic helminth, shown to be predominantly expressed in the testes and ovary of adult worms, we investigated its function. To unravel signaling cascades in which SmTK4 is involved, yeast two-/three-hybrid library screenings were performed with either the tandem SH2-domain, or with the linker region including the tyrosine kinase domain of SmTK4. Besides the Src kinase SmTK3 we identified a new Src kinase (SmTK6) acting upstream of SmTK4 and a MAPK-activating protein, as well as mapmodulin acting downstream. Their identities and colocalization studies pointed to a role of SmTK4 in a signaling cascade regulating the proliferation and/or differentiation of cells in the gonads of schistosomes. To confirm this decisive role we performed biochemical and molecular approaches to knock down SmTK4 combined with a novel protocol for confocal laser scanning microscopy for morphological analyses. Using the Syk kinase-specific inhibitor Piceatannol or by RNAi treatment of adult schistosomes in vitro, corresponding phenotypes were detected in the testes and ovary. In the Xenopus oocyte system it was finally confirmed that Piceatannol suppressed the activity of the catalytic kinase domain of SmTK4. Our findings demonstrate a pivotal role of SmTK4 in gametogenesis, a new function for Syk kinases in eukaryotes
Distinct IL-1α-responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner
How cytokine-driven changes in chromatin topology are converted into gene regulatory circuits during inflammation still remains unclear. Here, we show that interleukin (IL)-1α induces acute and widespread changes in chromatin accessibility via the TAK1 kinase and NF-κB at regions that are highly enriched for inflammatory disease-relevant SNPs. Two enhancers in the extended chemokine locus on human chromosome 4 regulate the IL-1α-inducible IL8 and CXCL1-3 genes. Both enhancers engage in dynamic spatial interactions with gene promoters in an IL-1α/TAK1-inducible manner. Microdeletions of p65-binding sites in either of the two enhancers impair NF-κB recruitment, suppress activation and biallelic transcription of the IL8/CXCL2 genes, and reshuffle higher-order chromatin interactions as judged by i4C interactome profiles. Notably, these findings support a dominant role of the IL8 “master” enhancer in the regulation of sustained IL-1α signaling, as well as for IL-8 and IL-6 secretion. CRISPR-guided transactivation of the IL8 locus or cross-TAD regulation by TNFα-responsive enhancers in a different model locus supports the existence of complex enhancer hierarchies in response to cytokine stimulation that prime and orchestrate proinflammatory chromatin responses downstream of NF-κB
- …