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Unified characterisations of

resolution hardness measures⋆

Olaf Beyersdorff1 and Oliver Kullmann2

1 School of Computing, University of Leeds
2 Computer Science Department, Swansea University

Abstract. Various “hardness” measures have been studied for resolu-
tion, providing theoretical insight into the proof complexity of resolution
and its fragments, as well as explanations for the hardness of instances
in SAT solving. In this paper we aim at a unified view of a number of
hardness measures, including different measures of width, space and size
of resolution proofs. Our main contribution is a unified game-theoretic
characterisation of these measures. As consequences we obtain new re-
lations between the different hardness measures. In particular, we prove
a generalised version of Atserias and Dalmau’s result on the relation
between resolution width and space from [5].

1 Introduction

Arguably, resolution is the best understood among all propositional proof sys-
tem, and at the same time it is the most important one in terms of applications.
To understand the complexity of resolution proofs, various hardness measures
have been defined and investigated. Historically the first and most studied mea-
sure is the size of resolution proofs, with the first lower bounds dating back to
Tseitin [55] and Haken [33]. A number of ingenious techniques have been devel-
oped to show lower bounds for the size of resolution proofs, among them feasible
interpolation [41], which applies to many further systems. In their seminal pa-
per [12], Ben-Sasson and Wigderson showed that resolution size lower bounds
can be elegantly obtained by showing lower bounds to the width of resolution
proofs. Indeed, the discovery of this relation between width and size of resolution
proofs was a milestone in our understanding of resolution. Around the same time
(tree) resolution space was investigated, and first lower bounds were obtained
[53,23,24,25,54]. The primary method to obtain lower bounds on resolution space
is based on width, and the general bound was shown in the fundamental paper
by Atserias and Dalmau [5]. Since then the relations between size, width and
space have been intensely investigated, resulting in particular in sharp trade-off
results [10,8,11,48,49,?]. Independently, in [42,45,46] the concept of “hardness”
has been introduced, with an algorithmic focus (as shown in [42], equivalent to
tree resolution space; one can also say “tree-hardness”), together with a gener-
alised form of width, which we call “asymmetric width” in this paper.

⋆ Research supported by a grant from the John Templeton Foundation.
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One of the prime motivations to understand these measures is their close
correspondence to SAT solving. In particular, resolution size and space relate
to the running time and memory consumption, respectively, of executions of
SAT solvers on unsatisfiable instances. However, size and space are not the only
measures which are interesting with respect to SAT solving, and the question
what constitutes a good hardness measure for practical SAT solving is a very
important one (cf. [4,36] for discussions).

The aim of this paper is to review different hardness measures defined in
the literature, and to provide unified characterisations for these measures in
terms of Prover-Delayer games and sets of partial assignments satisfying some
consistency conditions. These unified characterisations allow elegant proofs of
basic relations between the different hardness measures. Unlike in the works
[8,11,48], our emphasis here is not on trade-off results, but on exact relations
between the different measures. For a clause-set F we will consider the following
measures: (i) size measures: the depth dep(F ) and the hardness hd(F ) (of best
resolution refutations of F ); (ii) width measures: the symmetric and asymmetric
width wid(F ) and awid(F ); (iii) clause-space measures: semantic space css(F ),
resolution space crs(F ) and tree-resolution space cts(F ).

Game-theoretic methods have a long tradition in proof complexity, as
they provide intuitive and simplified methods for lower bounds in resolution, e.g.
for Haken’s exponential bound for the pigeonhole principle in dag-like resolution
[50], or the optimal bound in tree resolution [13], and even work for very strong
systems [9]. Inspired by the Prover-Delayer game of Pudlák and Impagliazzo [51],
we devise a game that characterises the hardness measure hd(F ). In contrast
to [51] it also works for satisfiable formulas (Theorem 12), due to elimination
of the communication between Prover and Delayer. We then explain a more
general game, allowing the Prover to also forget some information. This game
tightly characterises the asymmetric width hardness awid(F ) (Theorem 23); and
restricting this game by disallowing forgetting yields the hd-game (Lemma 24).

Characterisations by partial assignments provide an alternative com-
binatorial description of the hardness measures. In [5] such a characterisation is
obtained for wid(F ). Taking this as a starting point, we devise a hierarchy of
consistency conditions for sets of partial assignments which serve to characterise
asymmetric width awid(F ) (k-consistency, Theorem 22), hardness hd(F ) (weak
k-consistency), and depth dep(F ) (bare k-consistency).

Relations between these measures can be easily obtained by exploit-
ing the above characterisations. We obtain a generalised version of Atserias and
Dalmau’s connection between width and resolution space from [5], replacing sym-
metric width by the stronger notion of asymmetric width (handling long clauses
now), and resolution space by the possibly tighter semantic space (Theorem 27).
The full picture is presented in the following diagram, where F ∈ CLS has n
variables, minimal clause length p, and maximal length q of necessary clauses:

p //

''

awid(F ) //

))

css(F )
∼∗3

crs(F ) // cts(F )
=−1

hd(F ) // dep(F ) // n

q // wid(F )

11
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An arrow “h(F ) → h′(F )” means h(F ) ≤ h′(F ), and there is a sequence (Fn) of
clause-sets with bounded h(Fn) but unbounded h

′(Fn); in case of an undirected
edge no such separation is possible (crs differs from css at most by a factor of
3, while cts−1 = hd). The separation awid → css is shown in [49], crs → cts in
[36], hd → dep and wid → dep use unsatisfiable Horn 3-clause-sets, and dep → n
uses unsatisfiable clause-sets which are not minimally unsatisfiable.

These measures do not just apply to unsatisfiable clause-sets, but are ex-
tended to satisfiable clause-sets, taking a worst-case approach over all un-
satisfiable sub-instances obtained by applying partial assignments (instantia-
tions). For a fixed bound these measures allow for polynomial-time SAT solv-
ing via “oblivious” SAT algorithms — certain basic steps, applied in an ar-
bitrary manner, are guaranteed to succeed. The sets UCk of all clause-sets F
with hd(F ) ≤ k yield the basic hierarchy, and we have SAT decision in time
O(n(F )2 hd(F )−2 · ℓ(F )). The special case UC1 = UC was introduced in [57] for
the purpose of Knowledge Compilation (KC), and in [28,31] it is shown that
UC = SLUR holds, where SLUR is the class introduced in [52] as an umbrella
class for polynomial-time SAT solving. By [6,31] we get that membership deci-
sion for UCk with k ≥ 1 is coNP-complete.

Perhaps the main aim of measuring the complexity of satisfiable clause-
sets is to obtain SAT representations of boolean functions of various quality
(“hardness”) and sizes; see [29,32] for investigations into XOR-constraints. The
goal is to obtain “good” representations F of boolean functions (like cardinal-
ity or XOR-constraints) in the context of a larger SAT problem representa-
tions. “Good” means not “too big” and of “good” inference power. The latter
means (at least), that all unsatisfiable instantiations of F should be easy for SAT
solvers, motivating the worst-case approach (over all unsatisfiable sub-instances).
In the diagram above, having low dep(F ) is the strongest condition, having low
awid(F ) the weakest. The KC aspects, concerning size-hardness trade-offs, are
further investigated in [30]; see Corollary 29 for an application. This study of the
“best”choice of a representation, considering size (number of clauses) and hard-
ness (like hd, awid or css) among all (logically) equivalent clause-sets, likely could
not be carried out using (symmetric) width, but requires asymmetric width, so
that unbounded clause length can be handled. The traditional method to bound
the clause-length, by breaking up clauses via auxiliary variables, introduces un-
necessary complexity, and can hardly be applied if we only want to consider
(logically) equivalent clause-sets (without auxiliary variables).

This paper is organised as follows. After fixing notation in Sect. 2, we define
all hardness measures in Sect. 3 and prove some first results. Our main results
then follow in Sect. 4, where we prove the combinatorial characterisations of the
measures and infer basic connections. We conclude in Sect. 5 with a discussion
and some open questions.

2 Preliminaries

We use the general notions as in [38], but also define all notations.
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Clause-sets. VA is the (infinite) set of variables, while LIT is the set of literals,
where every literal is either a variable v or a complemented (negated) variable
v. For a set L ⊆ LIT of literals we use L := {x : x ∈ L}. A clause is a finite
C ⊂ LIT with C ∩C = ∅ (i.e., without conflicting literals), the set of all clauses
is CL. A clause-set is a finite set of clauses, the set of all clause-sets is CLS. For
k ∈ N0 we define k–CLS as the set of all F ∈ CLS where every clause C ∈ F
has length (width) at most k, i.e., |C| ≤ k. We use var : LIT → VA for the
underlying variable of a literal, while var(C) := {var(x) : x ∈ C} for a clause
C, and var(F ) :=

⋃
C∈F var(C) for a clause-set F . Measures for F ∈ CLS are

n(F ) := |var(F )| ∈ N0 (number of variables) and c(F ) := |F | ∈ N0 (number of
clauses). A special clause is the empty clause ⊥ := ∅ ∈ CL, a special clause-set
is the empty clause-set ⊤ := ∅ ∈ CLS.

A partial assignment is a map ϕ : V → {0, 1} for some finite V ⊂ VA, the
set of all partial assignments is PASS; we use var(ϕ) := V , and the number of
variables in a partial assignment is denoted by n(ϕ) := |var(ϕ)|. For a clause
C we denote by ϕC ∈ PASS the partial assignment which sets precisely the
literals in C to 0; furthermore we use 〈x → ε〉 ∈ PASS for a literal x and
ε ∈ {0, 1}, while 〈〉 ∈ PASS denotes the empty partial assignment. The natural
partial order on PASS is given by inclusion ϕ ⊆ ψ, that is, var(ϕ) ⊆ var(ψ) and
ϕ, ψ are compatible (do not assign different values to the same variable). The
application (instantiation) of ϕ to F ∈ CLS is denoted by ϕ∗F ∈ CLS, obtained
by first removing satisfied clauses C ∈ F (i.e., containing a literal x ∈ C with
ϕ(x) = 1), and then removing all falsified literals from the remaining clauses.

The set of satisfiable clause-sets is SAT := {F ∈ CLS | ∃ϕ ∈ PASS : ϕ∗F =
⊤}, while USAT := CLS \ SAT is the set of unsatisfiable clause-sets. For
F, F ′ ∈ CLS the implication-relation is defined as usual: F |= F ′ :⇔ ∀ϕ ∈
PASS : ϕ ∗ F = ⊤ ⇒ ϕ ∗ F ′ = ⊤. We write F |= C for F |= {C}. A clause
C with F |= C is an implicate of F , while a prime implicate is an implicate C
such that no C ′ ⊂ C is also an implicate; prc0(F ) is the set of prime implicates
of F . Finally, by r1 : CLS → CLS we denote unit-clause propagation, which is
defined recursively by r1(F ) := {⊥} if ⊥ ∈ F , r1(F ) := F if F does not contain
a unit-clause, while otherwise choose {x} ∈ F and set r1(F ) := r1(〈x→ 1〉 ∗ F ).

Resolution. Two clauses C,D are resolvable if |C ∩ D| = 1, i.e., they clash in
exactly one variable. For two resolvable clauses C and D the resolvent C ⋄D :=
(C ∪ D) \ {x, x} for C ∩ D = {x} is the union of the two clauses minus the
resolution literals. var(x) is called the resolution variable. The closure of F ∈
CLS under resolution has prc0(F ) as its subsumption-minimal elements.

The set of nodes of a tree T is denoted by nds(T ), the set of leaves by
lvs(T ) ⊆ nds(T ). The height htT (w) ∈ N0 of a node w ∈ nds(T ) is the height
of the subtree of T rooted at w (so lvs(T ) = {w ∈ nds(T ) : htT (w) = 0}). A
resolution tree is a pair R = (T,C) such that T is an ordered rooted tree, where
every inner node has exactly two children, and where the set of nodes is denoted
by nds(T ) and the root by rt(T ) ∈ nds(T ), while C : nds(T ) → CL labels every
node with a clause such that the label of an inner node is the resolvent of the
labels of its two parents. We use ax(R) := {C(w) : w ∈ lvs(T )} ∈ CLS for the
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“axioms” (or “premisses”) of R, C(R) := C(rt(T )) ∈ CL for the “conclusion”,
and cl(R) := {C(w) : w ∈ nds(T )} ∈ CLS for the set of all clauses in R.

A resolution proof R of a clause C from a clause-set F , denoted by R : F ⊢ C,
is a resolution tree R = (T,C) such that ax(R) ⊆ F and C(R) = C. We use
F ⊢ C if there exists a resolution proof R of some C ′ ⊆ C from F (i.e., R : F ⊢
C ′). A resolution refutation of a clause-set F is a resolution proof deriving ⊥

from F . The tree-resolution complexity Comp*R(R) ∈ N is the number of leaves

in R, that is, Comp*R(R) := |lvs(T )|. The resolution complexity CompR(R) ∈ N

is the number of distinct clauses in R, that is CompR(R) := c(cl(R)). Finally,

for F ∈ USAT we set Comp*R(F ) := min{Comp*R(R) |R : F ⊢ ⊥} ∈ N and
CompR(F ) := min{CompR(R) |R : F ⊢ ⊥} ∈ N.

3 Hardness measures

In this section we define the hardness measures hd, dep,wid, awid, css, crs, cts
(“hardness, depth, width, asymmetric width, semantic/resolution/tree space”)
that we investigate in this article, and observe some first connections.

First we discuss a general method for extending measures h0 for unsatisfiable
clause-sets to measures h for arbitrary clause-sets. The basic idea is to consider
the hardness of unsatisfiable sub-instances, obtained by partial instantiations.
In a probabilistic setting this has been considered e.g. in [1,3]. We however
consider the worst-case, which yields precise measurements. The special case of
extension of “hardness” was first mentioned (as one of two possibilities) by [4].
Our motivation was that the extension of clause-sets falsifiable by unit-clause
propagation yields precisely the class SLUR ([28,31]).

A measure h0 : USAT → N0, which is not increased by applying partial
assignments, is extended to h : CLS → N0 by h(⊤) := minF∈USAT h0(F ),
while for F ∈ CLS \ {⊤} we define h(F ) as the maximum of h0(ϕ ∗ F ) for
ϕ ∈ PASS with unsatisfiable ϕ ∗ F . So also h is not increased by applying
partial assignments, and h(F ) = h0(F ) for F ∈ USAT , while for h0 ≤ h′0 we get
h ≤ h′. Note that for the computation of h(F ), as the maximum of h0(ϕ∗F ) for
unsatisfiable ϕ ∗ F , one only needs to consider minimal ϕ (since application of
partial assignments can not increase the measure), that is, ϕC for C ∈ prc0(F );
so for F ∈ CLS\{⊤} we have h(F ) = maxC∈prc0(F ) h0(ϕ∗F ). In the following we
will define the hardness measure only for unsatisfiable clauses and then extend
them via the above method.

3.1 Tree-hardness

We start with what in our opinion is one of the central hardness measures for res-
olution, which is why we simply call it hardness (but for differentiation it might
be called tree-hardness, then written “thd”). This concept was reinvented in the
literature several times. Intuitively, hardness measures the height of the biggest
full binary tree which can be embedded into each tree-like resolution refutation
of the formula. This is also known as the Horton-Strahler number of a tree (see
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[58,22]). In the context of resolution this measure was first introduced in [42,46].
In a more loose sense, based on reduction rules, “hardness classes” are mentioned
in [26,27], based on an unpublished manuscript of St̊almarck from 1994.3) The
equivalent approach via tree-resolution space was introduced in [53,24,25,54].
These approaches concern only unsatisfiable clause-sets; the extension to satis-
fiable clause-sets considered in [42,46] generalises the reduction-rules-based ap-
proach, and is essentially different from the general extension process as discussed
above; the extension as in this paper was first considered in [4].

Definition 1. For F ∈ USAT let hd(F ) ∈ N0 be the minimal k ∈ N0 such that
a resolution tree T : F ⊢ ⊥ exists, where the Horton-Strahler number of T is at
most k, that is, for every node in T there exists a path to some leaf of length at
most k. For k ∈ N0 let UCk := {F ∈ CLS : hd(F ) ≤ k}.

See [42,46,28,31] for equivalent descriptions in this setting, where especially the
algorithmic approach, via generalised unit-clause propagation rk, is notable:
hardness is the minimal level k of generalised unit-clause propagation needed
to derive a contradiction under any instantiation. As shown in [42, Corollary
7.9], and more generally in [46, Theorem 5.14], we have

2hd(F ) ≤ Comp*R(F ) ≤ (n(F ) + 1)hd(F )

for F ∈ USAT .4) A simpler measure is the minimum depth ([56,19,20]):

Definition 2. For F ∈ USAT let dep(F ) ∈ N0 be the minimal height of a
resolution tree T : F ⊢ ⊥.

Obviously hd(F ) ≤ dep(F ) for all F ∈ CLS. For k ∈ N0 the class of F ∈ CLS
with dep(F ) ≤ k is called CANON(k) in [18,7]; by definition CANON(0) = UC0.
See Subsection 7.2 in [31] and Subsection 9.2 in [30] for further results.

3.2 Asymmetric width

The standard resolution-width of an unsatisfiable clause-set is the minimal k
such that a resolution refutation using only clauses of length at most k exists:

Definition 3. For F ∈ USAT the symmetric width wid(F ) ∈ N0 is the
smallest k ∈ N0 such that there is T : F ⊢ ⊥ with cl(T ) ∈ k–CLS.

Based on the notion of “k-resolution” introduced in [37], the ”asymmetric
width” was introduced in [42,45,46] (and further studied in [31,30,32]).5) Differ-
ent from the symmetric width, only one parent clause needs to have size at most
k (while there is no restriction on the other parent clause nor on the resolvent):

3) We have never seen these fragments called “A proof theoretic concept of tautolog-
ical hardness”, but the ideas circulated amongst some researchers from the formal
methods community.

4) Our motivation for the lower bound came from [21]. A similar lower bound is men-
tioned in [26,27], based on the manuscript of St̊almarck. An equivalent bound is
shown in [51] (see Subsection 4.1). In [23,24] the lower bound 2crs(F )−1 is shown.

5) In [31] the notation “whd” was used, to emphasise that we have an extension of
“hardness”; but now we consider the relation to “width” as more important.
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Definition 4. For a resolution tree T its asymmetric width awid(T ) ∈ N0

is defined as 0 if T is trivial (i.e., |nds(T )| = 1), while otherwise for left and
right children w1, w2 with subtrees T1, T2 we define awid(T ) as the maximum of
min(|C(w1)|, |C(w2)|) and max(awid(T1), awid(T2)).

We write R : F ⊢
k
C if R : F ⊢ C and awid(R) ≤ k. Now for F ∈ USAT

we define awid(F ) := min{k ∈ N0 | F ⊢k ⊥}. Finally for k ∈ N0 let WCk :=
{F ∈ CLS : awid(F ) ≤ k}.

The asymmetric width is a natural, but less known generalisation of symmet-
ric width, and these measures can be very different. Namely, for an unsatisfiable
Horn clause-set F holds awid(F ) ≤ 1, since unit-clause resolution (i.e., asym-
metric width at most 1) is sufficient to derive unsatisfiability. But wid(F ) is
unbounded: if F is minimally unsatisfiable, then wid(F ) equals the maximal
clause-length of F . For general minimally unsatisfiable F , the maximal clause-
length is a lower bound for wid(F ), but is unrelated to awid(F ). For bounded
clause-length of F however, wid and awid can be considered asymptotically
equivalent by Lemma 5 below.

In a seminal paper, Ben-Sasson and Wigderson [12] observe a fundamen-
tal relation between symmetric width and proof size for resolution refutations,
thereby establishing one of the main methods to prove resolution lower bounds.
We recall that in [42, Theorem 8.11] and [46, Theorem 6.12, Lemma 6.15] this
size-width relation is indeed strengthened to asymmetric width:

e
1
8

awid(F )2

n(F ) < CompR(F ) < 6 · n(F )awid(F )+2

for F ∈ USAT \ {{⊥}}, where e
1
8 = 1.1331484 . . . Note that compared to [12]

the numerator of the exponent does not depend on the maximal clause-length
of F . In [42, Lemma 8.13] it is shown that the partial ordering principle has
asymmetric width the square-root of the number of variables, while having a
polysize resolution refutation. Comparing asymmetric width to (tree-)hardness,
we have WC0 = UC0 and WC1 = UC1, while for all F ∈ CLS holds awid(F ) ≤
hd(F ). The latter is shown in [46, Lemma 6.8] (for unsatisfiable F ), and in
Corollary 25 below we provide an alternative proof.

It is an open problem whether for (fixed) k ≥ 3 we can decide “F ⊢k ⊥”
in polynomial time. For k = 1 there is a linear-time algorithm (since F ⊢1 ⊥
iff r1(F ) = {⊥}), and for k = 2 there is a quartic-time algorithm by [17]. See
the underlying report [16] for some partial results. In [42,46] a stronger system
was considered (which allows polynomial-time decision). It uses the closure under
input resolution, where only the conclusion is restricted to length ≤ k. Using this
system, [42, Lemma 8.5] obtains the connections wid(F ) − max(p, awid(F )) ≤
awid(F ) for F ∈ USAT ∩ p–CLS (see [46, Lemma 6.22] for a generalisation).
We give a freestanding proof in the underlying report [16]:

Lemma 5. For F ∈ p–CLS, p ∈ N0, holds wid(F ) ≤ awid(F )+max(p, awid(F )).



8

3.3 Space complexity

The last measures that we discuss in this paper relate to space complexity.
We consider three measures: semantic space, resolution space and tree space
(all counting clauses to be stored, under different rules). Semantic space was
introduced in [2]; a slightly modified definition follows.

Definition 6. Consider F ∈ CLS and k ∈ N. A semantic k-sequence for F
is a sequence F1, . . . , Fp ∈ CLS, p ∈ N, fulfilling the following conditions:

1. For all i ∈ {1, . . . , p} holds c(Fi) ≤ k.
2. F1 = ⊤, and for i ∈ {2, . . . , p} either holds Fi−1 |= Fi (inference), or there

is C ∈ F with Fi = Fi−1 ∪ {C} (axiom download).

A semantic sequence is called complete if Fp ∈ USAT . For F ∈ USAT the
semantic-space complexity of F , denoted by css(F ) ∈ N (“c” for “clause”),
is the minimal k ∈ N such there is a complete semantic k-sequence for F .

Different from [2], the elimination of clauses (“memory erasure”) is integrated
into the inference step, since we want our bound awid ≤ css to be as tight as
possible, and the tree-space, a special case of semantic space, shall fulfil cts =
hd+1. By definition we have css(ϕ∗F ) ≤ css(F ) for F ∈ USAT and ϕ ∈ PASS,
and thus css(F ) is naturally defined for all F ∈ CLS.

We come to the notion of resolution space originating in [39,40] and [53,24].
This measure was intensively studied during the last decade (cf. e.g. [11,48]).

Definition 7. Consider F ∈ CLS and k ∈ N. A resolution k-sequence for

F is a sequence F1, . . . , Fp ∈ CLS, p ∈ N, fulfilling the following conditions:

1. For all i ∈ {1, . . . , p} holds c(Fi) ≤ k.
2. F1 = ⊤, and for i ∈ {2, . . . , p} either holds Fi \ Fi−1 = {C}, where C is

a resolvent of two clauses in Fi (removal of clauses and/or addition of one
resolvent), or there is C ∈ F with Fi = Fi−1 ∪ {C} (axiom download).

A resolution k-sequence is complete if ⊥ ∈ Fp. For F ∈ USAT the resolution-
space complexity of F , denoted by crs(F ) ∈ N, is the minimal k ∈ N such
there is a complete resolution k-sequence for F .

We can also define a variant of space for tree-like resolution refutations.

Definition 8. A tree k-sequence for F is a resolution k-sequence for F , such
that in case of adding an inferred clause via Fi \Fi−1 = {R}, for R = C ⋄D with
C,D ∈ Fi−1, we always have C,D /∈ Fi. For F ∈ USAT the tree-resolution

space complexity of F , denoted by cts(F ) ∈ N, is the minimal k ∈ N such
there is a complete tree k-sequence for F .

Both measures crs, cts are again not increased by applying partial assign-
ments. By definition we have css(F ) ≤ crs(F ) ≤ cts(F ) for F ∈ CLS. We recall
a basic connection between tree space and hardness ([42, Subsection 7.2.1]):

Lemma 9 ([42]). For F ∈ CLS holds cts(F ) = hd(F ) + 1.
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We remarked earlier that by definition we have css(F ) ≤ crs(F ). In fact, the
two measures are the same up to a linear factor, as shown by [2]. Our factor is
different from [2]; see the underlying report [16] for the proof:

Proposition 10. For F ∈ CLS we have crs(F ) ≤ 3 css(F )− 2.

See the conclusions (Section 5) for further discussions.

4 Combinatorial characterisations

In this section we come to the main topic of this article: the characterisations
of the hardness measures introduced in the previous section by Prover-Delayer
games and sets of partial assignments.

4.1 Game characterisations for hardness

The game of Pudlák and Impagliazzo [51] is a well-known and classic Prover-
Delayer game, which serves as one of the main and conceptually very simple
methods to obtain resolution lower bounds for unsatisfiable formulas in CNF.
The game proceeds between a Prover and a Delayer. The Delayer claims to know
a satisfying assignment for an unsatisfiable clause-set, while the Prover wants
to expose his lie and in each round asks for a variable value. The Delayer can
either choose to answer this question by setting the variable to 0/1, or can defer
the choice to the Prover. In the latter case, Delayer scores one point. This game
provides a method for showing lower bounds for tree resolution. Namely, Pudlák
and Impagliazzo [51] show that exhibiting a Delayer strategy for a CNF F that
scores at least p points against every Prover implies a lower bound of 2p for the
proof size of F in tree resolution. This can now be understood through hardness;
by Lemma 9 we know that for unsatisfiable clause-set F holds cts(F ) = hd(F )+1,
while in [25] it was shown that the optimal value of the above game plus one
equals cts(F ), and thus hd(F ) is the optimal value of that game for F . We
remark that thus the game of Pudlák and Impagliazzo does not characterise tree
resolution size precisely ; in [15,13] a modified (asymmetric) version of the game
is introduced, which precisely characterises tree resolution size ([14]). We present
now the generalised hardness game, also handling satisfiable clause-sets. First
we need to determine how hardness is affected when assigning one variable:

Lemma 11. For clause-sets F ∈ CLS and v ∈ var(F ) either there is ε ∈ {0, 1}
with hd(〈v → ε〉∗F ) = hd(F ) and hd(〈v → ε〉∗F ) ≤ hd(F ), or we have hd(〈v →
0〉∗F ) = hd(〈v → 1〉∗F ) = hd(F )−1. If F is unsatisfiable and hd(F ) > 0, then
there is a variable v ∈ var(F ) and ε ∈ {0, 1} with hd(〈v → ε〉 ∗ F ) < hd(F ).

Proof. The assertion on the existence of v and ε follows by definition. Assume
now that neither of the two cases holds, i.e., that there is some ε ∈ {0, 1} such
that hd(〈v → ε〉 ∗ F ) ≤ hd(F ) − 1 and hd(〈v → ε〉 ∗ F ) ≤ hd(F ) − 2. Consider
a partial assignment ϕ such that ϕ ∗ F ∈ USAT and hd(ϕ ∗ F ) = hd(F ) (recall
Definition 1). Then v 6∈ var(ϕ) holds. Now hd(〈v → ε〉∗(ϕ∗F )) ≤ hd(F )−1 and
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hd(〈v → ε〉 ∗ (ϕ ∗ F )) ≤ hd(F )− 2, so by definition of hardness for unsatisfiable
clause-sets we have hd(ϕ ∗ F ) ≤ hd(F )− 1, a contradiction. ⊓⊔

We are ready to present the new game, which characterises hd(F ) for arbi-
trary F . A feature of this game, not shared by the original game, is that there is
just one “atomic action” for both players, the choice of a variable and a value,
and the rules are just about how this choice can be employed.

Theorem 12. Consider F ∈ CLS. The following game is played between Prover
and Delayer, where the partial assignments θ all fulfil var(θ) ⊆ var(F ):

1. The two players play in turns, and Delayer starts. Initially θ := 〈〉.
2. A move of Delayer extends θ to θ′ ⊇ θ.
3. A move of Prover extends θ to θ′ ⊃ θ with θ′ ∗ F = ⊤ or n(θ′) = n(θ) + 1.
4. The game ends as soon ⊥ ∈ θ ∗ F or θ ∗ F = ⊤. In the first case Delayer

gets as many points as variables have been assigned by Prover. In the second
case Delayer gets zero points.

Now there is a strategy of Delayer which can always achieve hd(F ) many points,
while Prover can always avoid that Delayer gets hd(F ) + 1 or more points.

Proof. The strategy of Prover is: If θ∗F is satisfiable, then extend θ to a satisfying
assignment. Otherwise choose v ∈ var(F ) and ε ∈ {0, 1} s.t. hd(〈v → ε〉 ∗ F )
is minimal. The strategy of Delayer is: Initially extend 〈〉 to some θ such that
θ ∗ F ∈ USAT and hd(θ ∗ F ) is maximal. For all other moves, and also for the
first move as an additional extension, as long as there are variables v ∈ var(θ∗F )
and ε ∈ {0, 1} with hd(〈v → ε〉 ∗ (θ ∗ F )) ≤ hd(θ ∗ F ) − 2, choose such a pair
(v, ε) and extend θ to θ ∪ 〈v → ε〉. The assertion follows by Lemma 11. ⊓⊔

The game of Theorem 12 can be extended to handle asymmetric width (Theo-
rem 23): Delayer in both cases just extends the current partial assignment, while
Prover for awid can additionally “forget” assignments.

4.2 Characterising hardness and depth by partial assignments

We now provide an alternative characterisation of hardness of clause-sets F by
sets P of partial assignments, complementing the games. The “harder” F is, the
better P “approximates” satisfying F . The minimum condition is:

Definition 13. A set P ⊆ PASS is minimal consistent for F ∈ CLS if
var(P) =

⋃
ϕ∈P

var(ϕ) ⊆ var(F ), for all ϕ ∈ P holds ⊥ /∈ ϕ ∗ F , and P 6= ∅.

P is a partially ordered set (by inclusion). Recall that a chain K is a subset
constituting a linear order, while the length of K is |K| − 1 ∈ Z≥−1, and a
maximal chain is a chain which can not be extended without breaking linearity.

Definition 14. For k ∈ N0 and F ∈ USAT let a weakly k-consistent set

of partial assignments for F be a minimally consistent set P for F , such
that the minimum length of a maximal chain in P is at least k, and for every
non-maximal ϕ ∈ P, every v ∈ var(F ) \ var(ϕ) and every ε ∈ {0, 1} there is
ϕ′ ∈ P with ϕ ∪ 〈v → ε〉 ⊆ ϕ′.
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There can be gaps between ϕ ⊂ ϕ′ for ϕ,ϕ′ ∈ P, corresponding to the moves
of Delayer in Theorem 12, who needs to prevent all “bad” assignments at once.

Proposition 15. For all F ∈ USAT we have hd(F ) > k if and only if there is
a weakly k-consistent set for partial assignments for F .

Proof. If there is a weakly k-consistent P, then Delayer from Theorem 12 has a
strategy achieving at last k+1 points by choosing a minimal θ′ ∈ P extending θ,
and maintaining in this way θ ∈ P as long as possible. And a weakly (hd(F )−1)-
consistent P for hd(F ) > 0 is given by the partial assignments obtained from
those ϕ ∈ PASS with ⊥ /∈ ϕ ∗ F by extending ϕ to ϕ′ := ϕ ∪ 〈v → ε〉 for such
v ∈ var(F ) \ var(ϕ) and ε ∈ {0, 1} with hd(ϕ′ ∗ F ) = hd(ϕ ∗ F ), and repeating
this extension as long as possible. ⊓⊔

A similar characterisation can also be given for the depth-measure dep(F )
(cf. Definition 2). For this we relax the concept of weak consistency:

Definition 16. For k ∈ N0 and F ∈ USAT let a barely k-consistent set

of partial assignments for F be a minimally consistent P for F such that
〈〉 ∈ P, and for every ϕ ∈ P with n(ϕ) < k and all v ∈ var(F ) \ var(ϕ) there is
ε ∈ {0, 1} with ϕ ∪ 〈v → ε〉 ∈ P.

By [56, Theorem 2.4] we get the following characterisation (we provide a
proof due to technical differences):

Proposition 17. For all F ∈ USAT we have dep(F ) > k if and only if there
is a barely k-consistent set for partial assignments for F .

Proof. If F has a resolution proof T of height k, then for a barely k′-consistent P
for F we have k′ < k, since otherwise starting at the root of T we follow a path
given by extending 〈〉 according to the extension-condition of P, and we arrive at
a ϕ ∈ P falsifying an axiom of T , contradicting the definition of P. On the other
hand, if dep(F ) > k, then there is a barely k-consistent P for F as follows: for
j ∈ {0, . . . , k} put those partial assignments ϕ ∈ PASS with var(ϕ) ⊆ var(F )
and n(ϕ) = j into P which do not falsify any clause derivable by a resolution
tree of depth at most k − j from F . Now consider ϕ ∈ P with j := n(ϕ) < k,
together with v ∈ var(F ) \ var(ϕ). Assume that for both ε ∈ {0, 1} we have
ϕ∪ 〈v → ε〉 /∈ P. So there are clauses C,D derivable from T by a resolution tree
of depth at most k− j − 1, with v ∈ C, v ∈ D, and ϕ ∗ {C,D} = {⊥}. But then
ϕ ∗ {C ⋄D} = {⊥}, contradicting the defining condition for ϕ. ⊓⊔

4.3 Characterising symmetric width by partial assignments

We now turn to characterisations of the width-hardness measures, starting with
the symmetric width measure wid. It is instructive to review the characterisation
for wid(F ) for F ∈ USAT from [5], using a different formulation.

Definition 18. Consider F ∈ CLS and k ∈ N0. A symmetrically k-consis-
tent set of partial assignments for F is a minimally consistent P for F ,
such that for all ϕ ∈ P, all v ∈ var(F ) \ var(ϕ), and all ψ ⊆ ϕ with n(ψ) < k
there exists ε ∈ {0, 1} and ϕ′ ∈ P with ψ ∪ 〈v → ε〉 ⊆ ϕ′.
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Note that a symmetrically k-consistent set is also barely k-consistent. For
the (simple) proof of the following lemma see the underlying report [16].

Lemma 19. Consider F ∈ USAT and k ∈ N0. Then Duplicator wins the
Boolean existential k-pebble game on F in the sense of [5] if and only if there
exists a symmetrically k-consistent set of partial assignment for F .

By [5, Theorem 2] (there “F ∈ r–CLS” is superfluous):

Corollary 20. For F ∈ USAT and k ∈ N0 holds wid(F ) > k if and only if
there exists a symmetrically k-consistent set of partial assignments for F .

4.4 Characterising asymmetric width by partial assignments

Similar to Definition 18, we characterise asymmetric width — the only difference
is, that the extensions must work for both truth values.

Definition 21. Consider F ∈ CLS and k ∈ N0. A k-consistent set of partial
assignments for F is a minimally consistent P for F , such that for all ϕ ∈ P,
all v ∈ var(F ) \ var(ϕ), all ψ ⊆ ϕ with n(ψ) < k and for both ε ∈ {0, 1} there is
ϕ′ ∈ P with ψ ∪ 〈v → ε〉 ⊆ ϕ′.

Similarly to [5, Theorem 2], where the authors provide a characterisation of
symmetric width, we obtain a characterisation of asymmetric width:

Theorem 22. For F ∈ USAT and k ∈ N0 holds awid(F ) > k if and only if
there exists a k-consistent set of partial assignments for F .

Proof. First assume awid(F ) > k. Let F ′ := {C ∈ CL | ∃R : F ⊢k C}. Note that
by definition F ⊆ F ′, while by assumption we have ⊥ /∈ F ′. Let P be the set of
maximal ϕ ∈ PASS with var(ϕ) ⊆ var(F ) and ⊥ /∈ ϕ ∗ F ′. We show that P is a
k-consistent set of partial assignments for F . Consider ϕ ∈ P, v ∈ var(F )\var(ϕ)
and ψ ⊆ ϕ with n(ψ) < k. Due to maximality of ϕ there are C,D ∈ F ′ with
v ∈ C, v ∈ D and (ϕ ∪ 〈v → 0〉) ∗ {C} = (ϕ ∪ 〈v → 1〉) ∗ {D} = {⊥}. Assume
that there is ε ∈ {0, 1}, such that for ψ′ := ψ ∪ 〈v → ε〉 there is no ϕ′ ∈ P with
ψ′ ⊆ ϕ′. Thus there is E ∈ F ′ with ψ′ ∗ {E} = {⊥}; so we have v ∈ var(E) and
|E| ≤ k. Now E is resolvable with either C or D via k-resolution, and for the
resolvent R ∈ F ′ we have ϕ ∗ {R} = {⊥}, contradicting the definition of P.

For the other direction, assume that P is a k-consistent set of partial as-
signments for F . For the sake of contradiction assume there is T : F ⊢k ⊥.
We show by induction on htT (w) that for all w ∈ nds(T ) and all ϕ ∈ P holds
ϕ ∗ {C(w)} 6= {⊥}, which at the root of T (where the clause-label is ⊥) yields
a contradiction. If htT (w) = 0 (i.e., w is a leaf), then the assertion follows by
definition; so assume htT (w) > 0. Let w1, w2 be the two children of w, and let
C := C(w) and Ci := C(wi) for i ∈ {1, 2}. W.l.o.g. |C1| ≤ k. Note C = C1 ⋄C2;
let v be the resolution variable, where w.l.o.g. v ∈ C1. Consider ϕ ∈ P; we have
to show ϕ ∗ {C} 6= {⊥}, and so assume ϕ ∗ {C} = {⊥}. By induction hypothesis
we know ⊥ /∈ ϕ ∗ {C1, C2}, and thus v /∈ var(ϕ). Let ψ := ϕ |(var(C1) \ {v}),
and ψ′ := ψ ∪ 〈v → 0〉. There is ϕ′ ∈ P with ψ′ ⊆ ϕ′, thus ψ′ ∗ {C1} = {⊥},
contradicting the induction hypothesis. ⊓⊔
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4.5 Game characterisation for asymmetric width

The characterisation of asymmetric width by partial assignments from the pre-
vious subsection will now be employed for a game-theoretic characterisation;
in fact, the k-consistent sets of partial assignments will directly translate into
strategies for Delayer (while a strategy of Prover is given by a resolution refu-
tation). We only handle the unsatisfiable case here — the general case can be
handled as in Theorem 12. This game extends (in a sense) the Prover-Delayer
game from [54] for symmetric width (but again without communication).

Theorem 23. Consider F ∈ USAT . The following game is played between
Prover and Delayer (as in Theorem 12, always var(θ) ⊆ var(F ) holds):

1. The two players play in turns, and Delayer starts. Initially θ := 〈〉.
2. Delayer extends θ to θ′ ⊇ θ.
3. Prover chooses some θ′ compatible with θ such that |var(θ′) \ var(θ)| = 1.
4. If ⊥ ∈ θ ∗ F , then the game ends, and Delayer gets the maximum of n(θ′)

chosen by Prover as points (0 if Prover didn’t make a choice).
5. Prover must play in such a way that the game is finite.

We have the following:

1. For a strategy of Delayer, which achieves k ∈ N points whatever Prover does,
we have awid(F ) ≥ k.

2. For a strategy of Prover, which guarantees that Delayer gets at most k ∈ N0

points in any case, we have awid(F ) ≤ k.
3. There is a strategy of Delayer which guarantees at least awid(F ) many points

(whatever Prover does).
4. There is a strategy of Prover which guarantees at most awid(F ) many points

for Delayer (whatever Delayer does).

Proof. W.l.o.g. ⊥ /∈ F . Part 1 follows by Part 4 (if awid(F ) < k, then Prover
could guarantee at most k−1 points), and Part 2 follows by Part 3 (if awid(F ) >
k, then Delayer could guarantee at least k + 1 points).

Let now k := awid(F ). For Part 3, a strategy of Delayer guaranteeing k
many points (at least) is as follows: Delayer chooses a (k − 1)-consistent set P

of partial assignment (by Theorem 22). The move of Delayer is to choose some
θ′ ∈ P. If Prover then chooses some θ′ with n(θ′) ≤ k − 1, then the possibility
of extension is maintained for Delayer. In this way the empty clause is never
created. Otherwise the Delayer has reached his goal, and might choose anything.

It remains to show that Prover can force the creation of the empty clause
such that Delayer obtains at most k many points. For that consider a resolution
refutation R : F ⊢ ⊥ which is a k-resolution tree. The strategy of Prover is to
construct partial assignments θ′ (from θ as given by Delayer) which falsify some
clause C of length at most k in R, where the height of the node is decreasing —
this will falsify finally some clause in F , finishing the game. The Prover considers
initially (before the first move of Delayer) just the root. When Prover is to move,
he considers a path from the current clause to some leaf, such that only clauses
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of length at most k are on that path. There must be a first clause C (starting
from the falsified clause, towards the leaves) on that path not falsified by θ (since
θ does not falsify any axiom). It must be the case that θ falsifies all literals in C
besides one literal x ∈ C, where var(x) /∈ var(θ). Now Prover chooses θ′ as the
restriction of θ to var(C) \ {var(x)} and extended by x→ 0. ⊓⊔

We already remarked in Section 3 that always awid(F ) ≤ hd(F ). Based on
the game characterisations shown here, we provide an easy alternative proof for
this fundamental fact for F ∈ USAT :

Lemma 24. Consider the game of Theorem 23, when restricted in such a way
that Prover must always choose some θ′ with n(θ′) > n(θ). This game is precisely
the game of Theorem 12.

Corollary 25. For all F ∈ CLS we have awid(F ) ≤ hd(F ).

4.6 Width hardness versus semantic space

We have already seen in Corollary 25, that our game-theoretic characterisations
allow quite easy and elegant proofs on tight relations between different hard-
ness measures. Our next result also follows this paradigm. It provides a striking
relation between asymmetric width and semantic space. We recall that Atse-
rias and Dalmau [5, Theorem 3] have shown wid(F ) ≤ crs(F ) + r − 1, where
F ∈ USAT ∩ r–CLS (all r ≥ 0 are allowed; note that now we can drop the
unsatisfiability condition). We generalise this result in Theorem 27 below, re-
placing resolution space crs(F ) by the tighter notion of semantic space css(F ).
More important, we eliminate the additional r−1 in the inequality, by changing
symmetric width wid(F ) into asymmetric width awid(F ) (cf. Lemma 5 for the
relation between these two measures). First a lemma similar to [5, Lemma 5]:

Lemma 26. Consider F ∈ CLS, a k-consistent set P of partial assignments for
F (k ∈ N0), and a semantic k-sequence (F1, . . . , Fp) for F (recall Definition 6).
Then there exist ϕi ∈ P with ϕi ∗ Fi = ⊤ for each i ∈ {1, . . . , p}.

Proof. Set ϕ1 := 〈〉 ∈ P. For i ∈ {2, . . . , p} the partial assignment ϕi is defined
inductively. If ϕi−1 ∗ Fi = ⊤, then ϕi := ϕi−1; this covers the case where Fi is
obtained from Fi−1 by addition of inferred clauses and/or removal of clauses. So
consider Fi = Fi−1 ∪ {C} for C ∈ F \ Fi−1 (thus c(Fi) < k), and we assume
ϕi−1 ∗Fi 6= ⊤. So there is a literal x ∈ C with var(x) /∈ ϕi−1, since ϕi−1 does not
falsify clauses from F . Choose some ψ ⊆ ϕi−1 with n(ψ) ≤ c(Fi−1) such that
ψ ∗Fi−1 = ⊤.6) There is ϕi ∈ P with ψ ∪ 〈x→ 1〉 ⊆ ϕi, whence ϕi ∗Fi = ⊤. ⊓⊔

We can now show the promised generalisation of [5, Theorem 3]:

Theorem 27. For F ∈ CLS holds awid(F ) ≤ css(F ).

6) For every partial assignment ϕ and every clause-set F with ϕ ∗ F = ⊤ there exists
ψ ⊆ ϕ with n(ψ) ⊆ c(F ) and ψ ∗ F = ⊤; see for example Lemma 4 in [5], and see
Corollary 8.6 in [47] for a generalisation.
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Proof. Assume F ∈ USAT and awid(F ) > css(F ); let k := css(F ). By Theorem
22 there is a k-consistent set P for F . Let (F1, . . . , Fp) be a complete semantic
k-sequence for F according to Definition 6. Now for the sequence (ϕ1, . . . , ϕp)
according to Lemma 26 we have ϕp ∗ Fp = ⊤, contradicting Fp ∈ USAT . ⊓⊔

We are now in a position to order most of the hardness measures that we
investigated here (cf. also the diagram in the introduction):

Corollary 28. awid(F ) ≤ css(F ) ≤ crs(F ) ≤ cts(F ) = hd(F )+1 for F ∈ CLS.

We conclude by an application of the extended measures cts, css : CLS → N0.
In [30] it is shown that for every k there are clause-sets in UCk+1 where every
(logically) equivalent clause-set in WCk is exponentially bigger. This implies,
in the language of representing boolean functions via CNFs, that allowing the
tree-space to increase by 2 over semantic space allows for an exponential saving
in size (regarding logical equivalence):

Corollary 29. For all constant k ∈ N there are sequences (Fn) of clause-sets
with cts(Fn) ≤ k+2 for all n, where all equivalent sequences (F ′

n) with css(F ′
n) ≤

k (for all n) are exponentially bigger.

5 Conclusion and open problems

In this paper we aimed at unified characterisations for the main hardness mea-
sures for resolution, thereby obtaining precise relations between these measures.
Continuing this programme, a deeper understanding of the three space measures
is required. In terms of the game-theoretic characterisations, the main question
left open is whether crs, css : CLS → N can be characterised in a similar spirit by
games and/or partial assignments (for cts we provided such characterisations).

A further block of questions concerns the exact relationship between the mea-
sures. We believe that Theorem 27 can be improved:

Conjecture 30. awid(F ) + 1 ≤ css(F ) for F ∈ CLS.

Then in Corollary 29 the “+2” could be replaced by “+1”. Note that Corollary
29 shows that such small measurement differences actually matter! Concerning
the space measures, it is conceivable that crs = css could hold; if not then
there could be substantial differences between crs and css regarding expressive
power, that is, regarding the power to represent boolean functions. Concerning
the precise relation between symmetric and asymmetric width, it appears that
Lemma 5 could be improved to wid(F ) ≤ awid(F )+ p− 1 for F ∈ p–CLS, p ≥ 1
(then Theorem 27 would precisely imply [5, Theorem 3]).

The question on the expressive power of the various classes (measures) seems
very relevant, and can also be raised when allowing new variables for the repre-
sentation of boolean functions; see [30] for a thorough discussion of these issues.

Also for practical SAT solving the influence of blocked clauses elimination/ad-
dition (introduced in [43,44], a generalisation of Extended Resolution) on hard-
ness measures needs to be studied (see [34,35] for recent developments).

Finally, a general theory of hardness measures might be possible (which might
also be applicable to other proof systems than resolution).
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