691 research outputs found

    Thickness dependence of linear and quadratic magneto-optical Kerr effect in ultrathin Fe(001) films

    Get PDF
    Magneto-optical Kerr effect (MOKE) magnetometry is one of the most widely employed techniques for the characterization of ferromagnetic thin-film samples. Some information, such as coercive fields or anisotropy strengths can be obtained without any knowledge of the optical and magneto-optical (MO) properties of the material. On the other hand, a quantitative analysis, which requires a precise knowledge of the material's index of refraction n and the MO coupling constants K and G is often desirable, for instance for the comparison of samples, which are different with respect to ferromagnetic layer thicknesses, substrates, or capping layers. While the values of the parameters n and the linear MO coupling parameter K reported by different authors usually vary considerably, the relevant quadratic MO coupling parameters G of Fe are completely unknown. Here, we report on measurements of the thickness dependence (0-60nm) of the linear and quadratic MOKE in epitaxial bcc-Fe(001) wedge-type samples performed at a commonly used laser wavelength of 670nm. By fitting the thickness dependence we are able to extract a complete set of parameters n, K, (G11 - G12), and G44 for the quantitative description of the MOKE of bcc-Fe(001). We find sizable different n, K, and G parameters for films thinner than about 10nm as compared to thicker films, which is indicative of a thickness dependence of the electronic properties or of surface contributions to the MOKE. The effect size of the quadratic MOKE is found to be about a third of the record values recently reported for Co2FeSi.Comment: 8 pages, 5 figure

    Intensity of Brillouin light scattering from spin waves in magnetic multilayers with noncollinear spin configurations: Theory and experiment

    Full text link
    The scattering of photons from spin waves (Brillouin light scattering -- BLS) is a well-established technique for the study of layered magnetic systems. The information about the magnetic state and properties of the sample is contained in the frequency position, width, and intensity of the BLS peaks. Previously [Phys. Rev. B 67, 184404 (2003)], we have shown that spin wave frequencies can be conveniently calculated within the ultrathin film approach, treating the intralayer exchange as an effective bilinear interlayer coupling between thin virtual sheets of the ferromagnetic layers. Here we give the consequent extension of this approach to the calculation of the Brillouin light scattering (BLS) peak intensities. Given the very close relation of the BLS cross-section to the magneto-optic Kerr effect (MOKE), the depth-resolved longitudinal and polar MOKE coefficients calculated numerically via the usual magneto-optic formalism can be employed in combination with the spin wave precessional amplitudes to calculate full BLS spectra for a given magnetic system. This approach allows an easy calculation of BLS intensities even for noncollinear spin configurations including the exchange modes. The formalism is applied to a Fe/Cr/Fe/Ag/Fe trilayer system with one antiferromagnetically coupling spacer (Cr). Good agreement with the experimental spectra is found for a wide variety of spin configurations.Comment: 19 pages, 5 figure

    Receptor use by pathogenic arenaviruses

    Get PDF
    The arenavirus family contains several important human pathogens including Lassa fever virus (LASV), lymphocytic choriomeningitis virus (LCMV) and the New World clade B viruses Junin (JUNV) and Machupo (MACV). Previously, α-dystroglycan (α-DG) was identified as a receptor recognized by LASV and certain strains of LCMV. However, other studies have suggested that α-DG is probably not used by the clade B viruses, and the receptor(s) for these pathogens is currently unknown. Using pseudotyped retroviral vectors displaying arenavirus glycoproteins (GPs), we are able to explore the role played by the GP in viral entry in the absence of other viral proteins. By examining the ability of the vectors to transduce DG knockout murine embryonic stem (ES) cells, we have confirmed that LASV has an absolute requirement for α-DG in these cells. However, the LCMV GP can still direct substantial entry into murine ES cells in the absence of α-DG, even when the GP from the clone 13 variant is used that has previously been reported to be highly dependent on α-DG for entry. We also found that neither LASV or LCMV pseudotyped vectors were able to transduce human or murine lymphocytes, presumably due to the glycosylation state of α-DG in these cells. In contrast, the JUNV and MACV GPs displayed broad tropism on human, murine and avian cell types, including lymphocytes, and showed no requirement for α-DG in murine ES cells. These findings highlight the importance of molecules other than α-DG for arenavirus entry. An alternate receptor is present on murine ES cells that can be used by LCMV but not by LASV, and which is not available on human or murine lymphocytes, while a distinct and widely expressed receptor(s) is used by the clade B viruses.Facultad de Ciencias Exacta

    Receptor use by pathogenic arenaviruses

    Get PDF
    The arenavirus family contains several important human pathogens including Lassa fever virus (LASV), lymphocytic choriomeningitis virus (LCMV) and the New World clade B viruses Junin (JUNV) and Machupo (MACV). Previously, α-dystroglycan (α-DG) was identified as a receptor recognized by LASV and certain strains of LCMV. However, other studies have suggested that α-DG is probably not used by the clade B viruses, and the receptor(s) for these pathogens is currently unknown. Using pseudotyped retroviral vectors displaying arenavirus glycoproteins (GPs), we are able to explore the role played by the GP in viral entry in the absence of other viral proteins. By examining the ability of the vectors to transduce DG knockout murine embryonic stem (ES) cells, we have confirmed that LASV has an absolute requirement for α-DG in these cells. However, the LCMV GP can still direct substantial entry into murine ES cells in the absence of α-DG, even when the GP from the clone 13 variant is used that has previously been reported to be highly dependent on α-DG for entry. We also found that neither LASV or LCMV pseudotyped vectors were able to transduce human or murine lymphocytes, presumably due to the glycosylation state of α-DG in these cells. In contrast, the JUNV and MACV GPs displayed broad tropism on human, murine and avian cell types, including lymphocytes, and showed no requirement for α-DG in murine ES cells. These findings highlight the importance of molecules other than α-DG for arenavirus entry. An alternate receptor is present on murine ES cells that can be used by LCMV but not by LASV, and which is not available on human or murine lymphocytes, while a distinct and widely expressed receptor(s) is used by the clade B viruses.Facultad de Ciencias Exacta

    Mosquitoes Inoculate High Doses of West Nile Virus as They Probe and Feed on Live Hosts

    Get PDF
    West Nile virus (WNV) is transmitted to vertebrate hosts by mosquitoes as they take a blood meal. The amount of WNV inoculated by mosquitoes as they feed on a live host is not known. Previous estimates of the amount of WNV inoculated by mosquitoes (101.2–104.3 PFU) were based on in vitro assays that do not allow mosquitoes to probe or feed naturally. Here, we developed an in vivo assay to determine the amount of WNV inoculated by mosquitoes as they probe and feed on peripheral tissues of a mouse or chick. Using our assay, we recovered approximately one-third of a known amount of virus inoculated into mouse tissues. Accounting for unrecovered virus, mean and median doses of WNV inoculated by four mosquito species were 104.3 PFU and 105.0 PFU for Culex tarsalis, 105.9 PFU and 106.1 PFU for Cx. pipiens, 104.7 PFU and 104.7 PFU for Aedes japonicus, and 103.6 PFU and 103.4 PFU for Ae. triseriatus. In a direct comparison, in vivo estimates of the viral dose inoculated by Cx. tarsalis were approximately 600 times greater than estimates obtained by an in vitro capillary tube transmission assay. Virus did not disperse rapidly, as >99% of the virus was recovered from the section fed or probed upon by the mosquito. Furthermore, 76% (22/29) of mosquitoes inoculated a small amount of virus (∼102 PFU) directly into the blood while feeding. Direct introduction of virus into the blood may alter viral tropism, lead to earlier development of viremia, and cause low rates of infection in co-feeding mosquitoes. Our data demonstrate that mosquitoes inoculate high doses of WNV extravascularly and low doses intravascularly while probing and feeding on a live host. Accurate estimates of the viral dose inoculated by mosquitoes are critical in order to administer appropriate inoculation doses to animals in vaccine, host competence, and pathogenesis studies

    Identification of new members of the Escherichia coli K-12 MG1655 SlyA regulon.

    Get PDF
    SlyA is a member of the MarR family of bacterial transcriptional regulators. Previously, SlyA has been shown to directly regulate only two operons in Escherichia coli K-12 MG1655, fimB and hlyE (clyA). In both cases SlyA activates gene expression by antagonizing repression by the nucleoid associated protein H-NS. Here the transcript profiles of aerobic glucose-limited steady-state chemostat cultures of E. coli K-12 MG1655, slyA mutant and slyA over-expression strains are reported. The transcript profile of the slyA mutant was not significantly different to that of the parent; however, that of the slyA expression strain was significantly different from that of the vector control. Transcripts representing 27 operons were increased in abundance, whereas 3 were decreased. Of the 30 differentially regulated operons, 24 have been previously associated with sites of H-NS binding, suggesting that antagonism of H-NS repression is a common feature of SlyA-mediated transcription regulation. Direct binding of SlyA to DNA located upstream of a selection of these targets permitted the identification of new operons likely to be directly regulated by SlyA. Transcripts of four operons coding for cryptic adhesins exhibited enhanced expression and this was consistent with enhanced biofilm formation associated with the SlyA over-producing strain
    corecore