214 research outputs found

    Geant4 Simulation of a filtered X-ray Source for Radiation Damage Studies

    Full text link
    Geant4 low energy extensions have been used to simulate the X-ray spectra of industrial X-ray tubes with filters for removing the uncertain low energy part of the spectrum in a controlled way. The results are compared with precisely measured X-ray spectra using a silicon drift detector. Furthermore, this paper shows how the different dose rates in silicon and silicon dioxide layers of an electronic device can be deduced from the simulations

    Double dynamical regime of confined water

    Full text link
    The Van Hove self correlation function of water confined in a silica pore is calculated from Molecular Dynamics trajectories upon supercooling. At long time in the α\alpha relaxation region we found that the behaviour of the real space time dependent correlators can be decomposed in a very slow, almost frozen, dynamics due to the bound water close to the substrate and a faster dynamics of the free water which resides far from the confining surface. For free water we confirm the evidences of an approach to a crossover mode coupling transition, previously found in Q space. In the short time region we found that the two dynamical regimes are overimposed and cannot be distinguished. This shows that the interplay between the slower and the faster dynamics emerges in going from early times to the α\alpha relaxation region, where a layer analysis of the dynamical properties can be performed.Comment: 6 pages with 9 figures. RevTeX. Accepted for pulbication in J. Phys. Cond. Mat

    On the surface critical behaviour in Ising strips: density-matrix renormalization-group study

    Full text link
    Using the density-matrix renormalization-group method we study the surface critical behaviour of the magnetization in Ising strips in the subcritical region. Our results support the prediction that the surface magnetization in the two phases along the pseudo-coexistence curve also behaves as for the ordinary transition below the wetting temperature for the finite value of the surface field.Comment: 15 pages, 9 figure

    Simulation of fluid-solid coexistence in finite volumes: A method to study the properties of wall-attached crystalline nuclei

    Full text link
    The Asakura-Oosawa model for colloid-polymer mixtures is studied by Monte Carlo simulations at densities inside the two-phase coexistence region of fluid and solid. Choosing a geometry where the system is confined between two flat walls, and a wall-colloid potential that leads to incomplete wetting of the crystal at the wall, conditions can be created where a single nanoscopic wall-attached crystalline cluster coexists with fluid in the remainder of the simulation box. Following related ideas that have been useful to study heterogeneous nucleation of liquid droplets at the vapor-liquid coexistence, we estimate the contact angles from observations of the crystalline clusters in thermal equilibrium. We find fair agreement with a prediction based on Young's equation, using estimates of interface and wall tension from the study of flat surfaces. It is shown that the pressure versus density curve of the finite system exhibits a loop, but the pressure maximum signifies the "droplet evaporation-condensation" transition and thus has nothing in common with a van der Waals-like loop. Preparing systems where the packing fraction is deep inside the two-phase coexistence region, the system spontaneously forms a "slab state", with two wall-attached crystalline domains separated by (flat) interfaces from liquid in full equilibrium with the crystal in between; analysis of such states allows a precise estimation of the bulk equilibrium properties at phase coexistence

    Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid

    Full text link
    When a phase-separated binary (A+BA+B) mixture is exposed to a wall, that preferentially attracts one of the components, interfaces between A-rich and B-rich domains in general meet the wall making a contact angle θ\theta. Young's equation describes this angle in terms of a balance between the ABA-B interfacial tension γAB\gamma_{AB} and the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} between, respectively, the AA- and BB-rich phases and the wall, γABcosθ=γwAγwB\gamma _{AB} \cos \theta =\gamma_{wA}-\gamma_{wB}. By Monte Carlo simulations of bridges, formed by one of the components in a binary Lennard-Jones liquid, connecting the two walls of a nanoscopic slit pore, θ\theta is estimated from the inclination of the interfaces, as a function of the wall-fluid interaction strength. The information on the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} are obtained independently from a new thermodynamic integration method, while γAB\gamma_{AB} is found from the finite-size scaling analysis of the concentration distribution function. We show that Young's equation describes the contact angles of the actual nanoscale interfaces for this model rather accurately and location of the (first order) wetting transition is estimated.Comment: 6 pages, 6 figure

    Excess free energy and Casimir forces in systems with long-range interactions of van-der-Waals type: General considerations and exact spherical-model results

    Full text link
    We consider systems confined to a dd-dimensional slab of macroscopic lateral extension and finite thickness LL that undergo a continuous bulk phase transition in the limit LL\to\infty and are describable by an O(n) symmetrical Hamiltonian. Periodic boundary conditions are applied across the slab. We study the effects of long-range pair interactions whose potential decays as bx(d+σ)b x^{-(d+\sigma)} as xx\to\infty, with 2<σ<42<\sigma<4 and 2<d+σ62<d+\sigma\leq 6, on the Casimir effect at and near the bulk critical temperature Tc,T_{c,\infty}, for 2<d<42<d<4. For the scaled reduced Casimir force per unit cross-sectional area, we obtain the form L^{d} {\mathcal F}_C/k_BT \approx \Xi_0(L/\xi_\infty) + g_\omega L^{-\omega}\Xi\omega(L/\xi_\infty) + g_\sigma L^{-\omega_\sigm a} \Xi_\sigma(L \xi_\infty). The contribution gσ\propto g_\sigma decays for TTc,T\neq T_{c,\infty} algebraically in LL rather than exponentially, and hence becomes dominant in an appropriate regime of temperatures and LL. We derive exact results for spherical and Gaussian models which confirm these findings. In the case d+σ=6d+\sigma =6, which includes that of nonretarded van-der-Waals interactions in d=3d=3 dimensions, the power laws of the corrections to scaling b\propto b of the spherical model are found to get modified by logarithms. Using general RG ideas, we show that these logarithmic singularities originate from the degeneracy ω=ωσ=4d\omega=\omega_\sigma=4-d that occurs for the spherical model when d+σ=6d+\sigma=6, in conjunction with the bb dependence of gωg_\omega.Comment: 28 RevTeX pages, 12 eps figures, submitted to PR

    Vibrational Features of Water at the Low-Density/High-Density Liquid Structural Transformations

    Full text link
    A structural transformation in water upon compression was recently observed at the temperature T=277T=277~K in the vicinity of the pressure p2  000p \approx 2\;000~Atm [R.M. Khusnutdinoff, A.V. Mokshin, J. Non-Cryst. Solids \textbf{357}, 1677 (2011)]. It was found that the transformations are related with the principal structural changes within the first two coordination shells as well as the deformation of the hydrogen-bond network. In this work we study in details the influence of these structural transformations on the vibrational molecular dynamics of water by means of molecular dynamics simulations on the basis of the model Amoeba potential (T=290T=290~K, p=1.0÷10  000p=1.0 \div 10\;000~Atm). The equation of state and the isothermal compressibility are found for the considered (pp,TT)-range. The vibrational density of states extracted for THzTHz-frequency range manifests the two distinct modes, where the high-frequency mode is independent on pressure whereas the low-frequency one has the strong, non-monotonic pressure-dependence and exhibits a step-like behavior at the pressure p2000p \approx 2000~Atm. The extended analysis of the local structural and vibrational properties discovers that there is a strong correlation between the primary structural and vibrational aspects of the liquid-liquid structural transformation related with the molecular rearrangement within the range of the second coordination shell.Comment: Accepted to Physica A: Statistical Mechanics and its Application

    X-ray Diffraction and Molecular Dynamics Study of Medium-range Order in Ambient and Hot Water

    Full text link
    We have developed x-ray diffraction measurements with high energy-resolution and accuracy to study water structure at three different temperatures (7, 25 and 66 C) under normal pressure. Using a spherically curved Ge crystal an energy resolution better than 15 eV has been achieved which eliminates influence from Compton scattering. The high quality of the data allows a precise oxygen-oxygen pair correlation function (PCF) to be directly derived from the Fourier transform of the experimental data resolving shell structure out to ~12 {\AA}, i.e. 5 hydration shells. Large-scale molecular dynamics (MD) simulations using the TIP4P/2005 force-field reproduce excellently the experimental shell-structure in the range 4-12 {\AA} although less agreement is seen for the first peak in the PCF. The Local Structure Index [J. Chem. Phys. 104, 7671 (1996)] identifies a tetrahedral minority giving the intermediate-range oscillations in the PCF and a disordered majority providing a more featureless background in this range. The current study supports the proposal that the structure of liquid water, even at high temperatures, can be described in terms of a two-state fluctuation model involving local structures related to the high-density and low-density forms of liquid water postulated in the liquid-liquid phase transition hypothesis.Comment: Submitted to Phys. Chem. Chem. Phy

    Supercooled confined water and the Mode Coupling crossover temperature

    Full text link
    We present a Molecular Dynamics study of the single particle dynamics of supercooled water confined in a silica pore. Two dynamical regimes are found: close to the hydrophilic substrate molecules are below the Mode Coupling crossover temperature, TCT_C, already at ambient temperature. The water closer to the center of the pore (free water) approaches upon supercooling TCT_C as predicted by Mode Coupling Theories. For free water the crossover temperature and crossover exponent γ\gamma are extracted from power-law fits to both the diffusion coefficient and the relaxation time of the late α\alpha region.Comment: To be published, Phys. Rev. Lett., 4 pages, 3 figures, revTeX, minor changes in the figures, references added, changes in the tex

    Ab initio van der Waals interactions in simulations of water alter structure from mainly tetrahedral to high-density-like

    Get PDF
    The structure of liquid water at ambient conditions is studied in ab initio molecular dynamics simulations using van der Waals (vdW) density-functional theory, i.e. using the new exchange-correlation functionals optPBE-vdW and vdW-DF2. Inclusion of the more isotropic vdW interactions counteracts highly directional hydrogen-bonds, which are enhanced by standard functionals. This brings about a softening of the microscopic structure of water, as seen from the broadening of angular distribution functions and, in particular, from the much lower and broader first peak in the oxygen-oxygen pair-correlation function (PCF), indicating loss of structure in the outer solvation shells. In combination with softer non-local correlation terms, as in the new parameterization of vdW-DF, inclusion of vdW interactions is shown to shift the balance of resulting structures from open tetrahedral to more close-packed. The resulting O-O PCF shows some resemblance with experiment for high-density water (A. K. Soper and M. A. Ricci, Phys. Rev. Lett., 84:2881, 2000), but not directly with experiment for ambient water. However, an O-O PCF consisting of a linear combination of 70% from vdW-DF2 and 30% from experiment on low-density liquid water reproduces near-quantitatively the experimental O-O PCF for ambient water, indicating consistency with a two-liquid model with fluctuations between high- and low-density regions
    corecore