422 research outputs found

    Medium-term performance and maintenance of SUDS:a case-study of Hopwood Park Motorway Service Area, UK

    Get PDF
    One of the main barriers to implementing SUDS is concern about performance and maintenance costs since there are few well-documented case-studies. This paper summarizes studies conducted between 2000 and 2008 of the performance and maintenance of four SUDS management trains constructed in 1999 at the Hopwood Park Motorway Service Area, central England. Assessments were made of the wildlife value and sedimentation in the SUDS ponds, the hydraulic performance of the coach park management train, water quality in all management trains, and soil/sediment composition in the grass filter strip, interceptor and ponds. Maintenance procedures and costs were also reviewed. Results demonstrate the benefits of a management train approach over individual SUDS units for flow attenuation, water treatment, spillage containment and maintenance. Peak flows, pond sediment depth and contaminant concentrations in sediment and water decreased through the coach park management train. Of the 2007 annual landscape budget of £15,000 for the whole site, the maintenance costs for SUDS only accounted for £2,500 compared to £4,000 for conventional drainage structures. Furthermore, since sediment has been attenuated in the management trains, the cost of sediment removal after the recommended period of three years was only £554 and, if the design is not compromised, less frequent removal will be required in future

    Characterization of Modular Bacteriophage Endolysins from Myoviridae Phages OBP, 201ϕ2-1 and PVP-SE1

    Get PDF
    Peptidoglycan lytic enzymes (endolysins) induce bacterial host cell lysis in the late phase of the lytic bacteriophage replication cycle. Endolysins OBPgp279 (from Pseudomonas fluorescens phage OBP), PVP-SE1gp146 (Salmonella enterica serovar Enteritidis phage PVP-SE1) and 201ϕ2-1gp229 (Pseudomonas chlororaphis phage 201ϕ2-1) all possess a modular structure with an N-terminal cell wall binding domain and a C-terminal catalytic domain, a unique property for endolysins with a Gram-negative background. All three modular endolysins showed strong muralytic activity on the peptidoglycan of a broad range of Gram-negative bacteria, partly due to the presence of the cell wall binding domain. In the case of PVP-SE1gp146, this domain shows a binding affinity for Salmonella peptidoglycan that falls within the range of typical cell adhesion molecules (Kaff = 1.26×106 M−1). Remarkably, PVP-SE1gp146 turns out to be thermoresistant up to temperatures of 90°C, making it a potential candidate as antibacterial component in hurdle technology for food preservation. OBPgp279, on the other hand, is suggested to intrinsically destabilize the outer membrane of Pseudomonas species, thereby gaining access to their peptidoglycan and exerts an antibacterial activity of 1 logarithmic unit reduction. Addition of 0.5 mM EDTA significantly increases the antibacterial activity of the three modular endolysins up to 2–3 logarithmic units reduction. This research work offers perspectives towards elucidation of the structural differences explaining the unique biochemical and antibacterial properties of OBPgp279, PVP-SE1gp146 and 201ϕ2-1gp229. Furthermore, these endolysins extensively enlarge the pool of potential antibacterial compounds used against multi-drug resistant Gram-negative bacterial infections

    A Profile of Wild Pig Hunters in Texas, USA

    Get PDF
    Wild pigs (Sus scrofa) are a widespread exotic, invasive species that poses ecological, agricultural, and human health risks in invaded areas. Wildlife managers often manage wild pig abundance and expansion to mitigate these risks. The diversity of stakeholders involved in the issue of wild pig management complicates efforts to manage the species, and, to be successful, wildlife professionals should consider the human dimensions associated with wild pig management. The prevalence of privately owned lands in Texas, USA necessitates cooperation to enact effective management policies. In this study, we investigate the factors that affect a hunter’s likelihood to participate in wild pig hunting. Multiple factors affect participation in wild pig hunting activities. We found that participation in other types of big game hunting increased the likelihood of participation in wild pig hunting and that wild pig hunting does not deter individuals from participating in other types of hunting activities. Additionally, hunters’ attitudes toward wild pigs are important in determining the likelihood of participation in wild pig hunting. Finally, our results suggest that hunters are largely uninformed about wild pigs and do not hold the same perceptions, values, or tolerance levels of the species. The diversity of preferences among wild pig hunters necessitates that wildlife managers consider the desires of the public as well as natural resource needs in creating socially acceptable management plans for the species

    Hunter Motivations and Use of Wild Pigs in Texas, USA

    Get PDF
    Wild pigs (Sus scrofa) are a widespread exotic, invasive species that pose ecological, agricultural, and human health risks in their invaded range. Wildlife managers must manage wild pig abundance and range expansion to mitigate these risks. The diversity of stakeholders involved in the issue of wild pig management complicates efforts to manage the species, and, to be successful, wildlife professionals must consider the human dimensions associated with wild pig management. The prevalence of privately owned lands in Texas, USA necessitates cooperation to enact effective management policies. In this study, we investigate the impact of hunter motivations on wild pig harvest quantity. Motivations driving wild pig hunting are diverse. While the majority of wild pig hunters in Texas are motivated by trophy value, meat-motivated hunters harvest more wild pigs per day afield. Wildlife managers should develop plans that include various management techniques to control wild pig population growth and damage. Education and outreach will continue to be important for involving private landowners in effective wild pig management

    DUF3380 domain from a Salmonella phage endolysin shows potent N -acetylmuramidase activity

    Get PDF
    Bacteriophage-encoded endolysins are highly diverse enzymes that cleave the bacterial peptidoglycan layer. Current research focuses on their potential applications in medicine, in food conservation, and as biotechnological tools. Despite the wealth of applications relying on the use of endolysin, little is known about the enzymatic properties of these enzymes, especially in the case of endolysins of bacteriophages infecting Gram-negative species. Automated genome annotations therefore remain to be confirmed. Here, we report the biochemical analysis and cleavage site determination of a novel Salmonella bacteriophage endolysin, Gp110, which comprises an uncharacterized domain of unknown function (DUF3380; pfam11860) in its C terminus and shows a higher specific activity (34,240 U/μM) than that of 14 previously characterized endolysins active against peptidoglycan from Gram-negative bacteria (corresponding to 1.7- to 364-fold higher activity). Gp110 is a modular endolysin with an optimal pH of enzymatic activity of pH 8 and elevated thermal resistance. Reverse-phase high-performance liquid chromatography (RP-HPLC) analysis coupled to mass spectrometry showed that DUF3380 has N-acetylmuramidase (lysozyme) activity cleaving the β-(1,4) glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine residues. Gp110 is active against directly cross-linked peptidoglycans with various peptide stem compositions, making it an attractive enzyme for developing novel antimicrobial agents

    A thermostable salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids

    Get PDF
    Resistance rates are increasing among several problematic Gram-negative pathogens, a fact that has encouraged the development of new antimicrobial agents. This paper characterizes a Salmonella phage endolysin (Lys68) and demonstrates its potential antimicrobial effectiveness when combined with organic acids towards Gram-negative pathogens. Biochemical characterization reveals that Lys68 is more active at pH 7.0, maintaining 76.7% of its activity when stored at 4°C for two months. Thermostability tests showed that Lys68 is only completely inactivated upon exposure to 100°C for 30 min, and circular dichroism analysis demonstrated the ability to refold into its original conformation upon thermal denaturation. It was shown that Lys68 is able to lyse a wide panel of Gram-negative bacteria (13 different species) in combination with the outer membrane permeabilizers EDTA, citric and malic acid. While the EDTA/Lys68 combination only inactivated Pseudomonas strains, the use of citric or malic acid broadened Lys68 antibacterial effect to other Gram-negative pathogens (lytic activity against 9 and 11 species, respectively). Particularly against Salmonella Typhimurium LT2, the combinatory effect of malic or citric acid with Lys68 led to approximately 3 to 5 log reductions in bacterial load/CFUs after 2 hours, respectively, and was also able to reduce stationary-phase cells and bacterial biofilms by approximately 1 log. The broad killing capacity of malic/citric acid-Lys68 is explained by the destabilization and major disruptions of the cell outer membrane integrity due to the acidity caused by the organic acids and a relatively high muralytic activity of Lys68 at low pH. Lys68 demonstrates good (thermo)stability properties that combined with different outer membrane permeabilizers, could become useful to combat Gram-negative pathogens in agricultural, food and medical industry.This work was supported by the projects FCOMP-01-0124-FEDER-019446, FCOMP-01-0124-FEDER-027462 and PEst-OE/EQB/LA0023/2013 from "Fundacao para a Ciencia e Tecnologia" (FCT), Portugal. The authors thank the Project "BioHealth - Biotechnology and Bioengineering approaches to improve health quality", Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON. 2 - O Novo Norte), QREN, FEDER. Hugo Oliveira acknowledges the FCT grant SFRH/BD/63734/2009. Maarten Walmagh held a PhD scholarship of the IWT Vlaanderen. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK

    Get PDF
    Ponds support a rich biodiversity because the heterogeneity of individual ponds creates, at the landscape scale, a diversity of habitats for wildlife. The distribution of pond animals and plants will be influenced by both the local conditions within a pond and the spatial distribution of ponds across the landscape. Separating out the local from the spatial is difficult because the two are often linked. Pond snails are likely to be affected by both local conditions, e.g. water hardness, and spatial patterns, e.g. distance between ponds, but studies of snail communities struggle distinguishing between the two. In this study, communities of snails were recorded from 52 ponds in a biogeographically coherent landscape in north-east England. The distribution of snail communities was compared to local environments characterised by the macrophyte communities within each pond and to the spatial pattern of ponds throughout the landscape. Mantel tests were used to partial out the local versus the landscape respective influences. Snail communities became more similar in ponds that were closer together and in ponds with similar macrophyte communities as both the local and the landscape scale were important for this group of animals. Data were collected from several types of ponds, including those created on nature reserves specifically for wildlife, old field ponds (at least 150 years old) primarily created for watering livestock and subsidence ponds outside protected areas or amongst coastal dunes. No one pond type supported all the species. Larger, deeper ponds on nature reserves had the highest numbers of species within individual ponds but shallow, temporary sites on farm land supported a distinct temporary water fauna. The conservation of pond snails in this region requires a diversity of pond types rather than one idealised type and ponds scattered throughout the area at a variety of sites, not just concentrated on nature reserves

    Exploring Pompeii: discovering hospitality through research synergy

    Get PDF
    Hospitality research continues to broaden through an ever-increasing dialogue and alignment with a greater number of academic disciplines. This paper demonstrates how an enhanced understanding of hospitality can be achieved through synergy between archaeology, the classics and sociology. It focuses on classical Roman life, in particular Pompeii, to illustrate the potential for research synergy and collaboration, to advance the debate on hospitality research and to encourage divergence in research approaches. It demonstrates evidence of commercial hospitality activities through the excavation hotels, bars and taverns, restaurants and fast food sites. The paper also provides an example of the benefits to be gained from multidisciplinary analysis of hospitality and tourism

    Characterization and genome sequencing of a Citrobacter freundii phage CfP1 harboring a lysin active against multidrug-resistant isolates

    Get PDF
    Citrobacter spp., although frequently ignored, is emerging as an important nosocomial bacterium able to cause various superficial and systemic life-threatening infections. Considered to be hard-to-treat bacterium due to its pattern of high antibiotic resistance, it is important to develop effective measures for early and efficient therapy. In this study, the first myovirus (vB_CfrM_CfP1) lytic for Citrobacter freundii was microbiologically and genomically characterized. Its morphology, activity spectrum, burst size, and biophysical stability spectrum were determined. CfP1 specifically infects C. freundii, has broad host range (>85 %; 21 strains tested), a burst size of 45 PFU/cell, and is very stable under different temperatures (20 to 50 °C) and pH (3 to 11) values. CfP1 demonstrated to be highly virulent against multidrug-resistant clinical isolates up to 12 antibiotics, including penicillins, cephalosporins, carbapenems, and fluroquinoles. Genomically, CfP1 has a dsDNA molecule with 180,219 bp with average GC content of 43.1 % and codes for 273 CDSs. The genome architecture is organized into function-specific gene clusters typical for tailed phages, sharing 46 to 94 % nucleotide identity to other Citrobacter phages. The lysin gene encoding a predicted D-Ala-D-Ala carboxypeptidase was also cloned and expressed in Escherichia coli and its activity evaluated in terms of pH, ionic strength, and temperature. The lysine optimum activity was reached at 20 mM HEPES, pH 7 at 37 °C, and was able to significantly reduce all C. freundii (>2 logs) as well as Citrobacter koseri (>4 logs) strains tested. Interestingly, the antimicrobial activity of this enzyme was performed without the need of pretreatment with outer membrane-destabilizing agents. These results indicate that CfP1 lysin is a good candidate to control problematic Citrobacter infections, for which current antibiotics are no longer effective.This study was funded by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER006684), and the PhD grants SFRH/BPD/111653/2015 and SFRH/BPD/69356/2010
    corecore