43 research outputs found

    Transcriptional and Proteomic Analysis of the Aspergillus fumigatus ΔprtT Protease-Deficient Mutant

    Get PDF
    Aspergillus fumigatus is the most common opportunistic mold pathogen of humans, infecting immunocompromised patients. The fungus invades the lungs and other organs, causing severe damage. Penetration of the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases to degrade the host structural barriers. The A. fumigatus transcription factor PrtT controls the expression of multiple secreted proteases. PrtT shows similarity to the fungal Gal4-type Zn(2)-Cys(6) DNA-binding domain of several transcription factors. In this work, we further investigate the function of this transcription factor by performing a transcriptional and a proteomic analysis of the ΔprtT mutant. Unexpectedly, microarray analysis revealed that in addition to the expected decrease in protease expression, expression of genes involved in iron uptake and ergosterol synthesis was dramatically decreased in the ΔprtT mutant. A second finding of interest is that deletion of prtT resulted in the upregulation of four secondary metabolite clusters, including genes for the biosynthesis of toxic pseurotin A. Proteomic analysis identified reduced levels of three secreted proteases (ALP1 protease, TppA, AFUA_2G01250) and increased levels of three secreted polysaccharide-degrading enzymes in the ΔprtT mutant possibly in response to its inability to derive sufficient nourishment from protein breakdown. This report highlights the complexity of gene regulation by PrtT, and suggests a potential novel link between the regulation of protease secretion and the control of iron uptake, ergosterol biosynthesis and secondary metabolite production in A. fumigatus

    SREBP Coordinates Iron and Ergosterol Homeostasis to Mediate Triazole Drug and Hypoxia Responses in the Human Fungal Pathogen Aspergillus fumigatus

    Get PDF
    Sterol regulatory element binding proteins (SREBPs) are a class of basic helix-loop-helix transcription factors that regulate diverse cellular responses in eukaryotes. Adding to the recognized importance of SREBPs in human health, SREBPs in the human fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus are required for fungal virulence and susceptibility to triazole antifungal drugs. To date, the exact mechanism(s) behind the role of SREBP in these observed phenotypes is not clear. Here, we report that A. fumigatus SREBP, SrbA, mediates regulation of iron acquisition in response to hypoxia and low iron conditions. To further define SrbA's role in iron acquisition in relation to previously studied fungal regulators of iron metabolism, SreA and HapX, a series of mutants were generated in the ΔsrbA background. These data suggest that SrbA is activated independently of SreA and HapX in response to iron limitation, but that HapX mRNA induction is partially dependent on SrbA. Intriguingly, exogenous addition of high iron or genetic deletion of sreA in the ΔsrbA background was able to partially rescue the hypoxia growth, triazole drug susceptibility, and decrease in ergosterol content phenotypes of ΔsrbA. Thus, we conclude that the fungal SREBP, SrbA, is critical for coordinating genes involved in iron acquisition and ergosterol biosynthesis under hypoxia and low iron conditions found at sites of human fungal infections. These results support a role for SREBP–mediated iron regulation in fungal virulence, and they lay a foundation for further exploration of SREBP's role in iron homeostasis in other eukaryotes

    Combined effects of exposure to engineered silver nanoparticles and the water-soluble fraction of crude oil in the marine copepod Calanus finmarchicus

    Get PDF
    While it is likely that ENPs may occur together with other contaminants in nature, the combined effects of exposure to both ENPs and environmental contaminants are not studied sufficiently. In this study, we investigated the acute and sublethal toxicity of PVP coated silver nanoparticles (AgNP) and ionic silver (Ag+; administered as AgNO3) to the marine copepod Calanus finmarchicus. We further studied effects of single exposures to AgNPs (nominal concentrations: low 15 μg L−1 NPL, high 150 μg L−1 NPH) or Ag+ (60 μg L−1), and effects of co-exposure to AgNPs, Ag+ and the water-soluble fraction (WSF; 100 μg L−1) of a crude oil (AgNP + WSF; Ag++WSF). The gene expression and the activity of antioxidant defense enzymes SOD, CAT and GST, as well as the gene expression of HSP90 and CYP330A1 were determined as sublethal endpoints. Results show that Ag+ was more acutely toxic compared to AgNPs, with 96 h LC50 concentrations of 403 μg L−1 for AgNPs, and 147 μg L−1 for Ag+. Organismal uptake of Ag following exposure was similar for AgNP and Ag+, and was not significantly different when co-exposed to WSF. Exposure to AgNPs alone caused increases in gene expressions of GST and SOD, whereas WSF exposure caused an induction in SOD. Responses in enzyme activities were generally low, with significant effects observed only on SOD activity in NPL and WSF exposures and on GST activity in NPL and NPH exposures. Combined AgNP and WSF exposures caused slightly altered responses in expression of SOD, GST and CYP330A1 genes compared to the single exposures of either AgNPs or WSF. However, there was no clear pattern of cumulative effects caused by co-exposures of AgNPs and WSF. The present study indicates that the exposure to AgNPs, Ag+, and to a lesser degree WSF cause an oxidative stress response in C. finmarchicus, which was slightly, but mostly not significantly altered in combined exposures. This indicated that the combined effects between Ag and WSF are relatively limited, at least with regard to oxidative stress.publishedVersio

    Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry

    Get PDF
    Invasive pulmonary aspergillosis results in 450,000 deaths per year and complicates cancer chemotherapy, transplantations and the treatment of other immunosuppressed patients. Using a rat model of experimental aspergillosis, the fungal siderophores ferricrocin and triacetylfusarinine C were identified as markers of aspergillosis and quantified in urine, serum and lung tissues. Biomarkers were analyzed by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization mass spectrometry using a 12T SolariX Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The limits of detection of the ferri-forms of triacetylfusarinine C and ferricrocin in the rat serum were 0.28 and 0.36 ng/mL, respectively. In the rat urine the respective limits of detection achieved 0.02 and 0.03 ng/mL. In the sera of infected animals, triacetylfusarinine C was not detected but ferricrocin concentration fluctuated in the 3-32 ng/mL range. Notably, the mean concentrations of triacetylfusarinine C and ferricrocin in the rat urine were 0.37 and 0.63 μg/mL, respectively. The MALDI FTICR mass spectrometry imaging illustrated the actual microbial ferricrocin distribution in the lung tissues and resolved the false-positive results obtained by the light microscopy and histological staining. Ferricrocin and triacetylfusarinine C detection in urine represents an innovative non-invasive indication of Aspergillus infection in a host
    corecore