
Mol Imaging Biol (201 ) 16:102Y108
DOI: 10.1007/s11307-013-0654-7
* The Author(s), 2013. This article is published with open access at Springerlink.com

RESEARCH ARTICLE

68Ga-Triacetylfusarinine C and 68Ga-Ferrioxamine
E for Aspergillus Infection Imaging: Uptake
Specificity in Various Microorganisms
Milos Petrik,1,4 Hubertus Haas,2 Peter Laverman,3 Markus Schrettl,2

Gerben M. Franssen,3 Michael Blatzer,2 Clemens Decristoforo1

1Clinical Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
2Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, Austria
3Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
4Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic

Abstract
Purpose: 68Ga-triacetylfusarinine C (68Ga-TAFC) and 68Ga-ferrioxamine E (68Ga-FOXE) showed
excellent targeting properties in Aspergillus fumigatus rat infection model. Here, we report on the
comparison of specificity towards different microorganisms and human lung cancer cells (H1299).
Procedures: The in vitro uptake of 68Ga-TAFC and 68Ga-FOXE was studied in various fungal,
bacterial and yeast cultures as well as in H1299 cells. The in vivo imaging was studied in fungal
and bacterial rat infection and inflammation models.
Results: 68Ga-TAFC and 68Ga-FOXE showed rapid uptake in A. fumigatus cultures, significantly
lower in other fungal species and almost no uptake in other microorganisms and H1299 cells,
except for 68Ga-FOXE in Staphylococcus aureus. 68Ga-TAFC and 68Ga-FOXE revealed rapid
uptake in the lungs of A. fumigatus-infected rats, low accumulation in sterile inflammation and no
uptake in bacterial abscess.
Conclusions: We have shown that 68Ga-FOXE and 68Ga-TAFC have high uptake in A.
fumigatus both in vitro and in vivo. 68Ga-TAFC showed higher specificity, while 68Ga-FOXE
showed higher sensitivity.

Key words: Siderophores, Gallium-68, Infection imaging, Aspergillus fumigatus, Positron
emission tomography

Introduction

Iron is an essential cofactor for a variety of important
cellular processes and, therefore, can be considered as a

vital nutrient for virtually all forms of life [1, 2]. Most
microorganisms use special mechanisms to acquire iron
including production of siderophores [3]. Mainly in the iron-
poor environments, microorganisms such as Aspergillus

fumigatus produce large amounts of siderophores to scav-
enge iron (III) and enable its uptake into the organism [4]. It
has recently been recognised that iron plays an essential role
in infection in general [5] and in fungal infections in
particular. It has been shown that in particular, the
siderophore system is essential for the virulence of A.
fumigatus [6].

Siderophores are low molecular weight, iron-chelating
ligands synthesised by almost all microorganisms for iron
acquisition and storage; however, not all aspects of
siderophore utilisation by microorganisms are fully under-
stood. Luckey et al. [7] reported that some bacterial strains
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lost the ability to synthesise siderophores but retained the ability
to utilise siderophores released by other microorganisms.
Similarly, Haas [8], Philpott et al. [9] and Heymann et al. [10]
reported that several fungal species are able to utilise siderophores
produced by other fungi, indicating the lack of specificity of
siderophore systems for particular microorganisms.

A great variety of different siderophores are known today,
the majority being of hydroxamate, catecholate or α-
hydroxycarboxylate type, each having a high selectivity for
iron (III) [11]. The chemistry of iron (III) and gallium (III) is
very similar and was already widely exploited in the field of
nuclear medicine in the use of 67Ga-citrate. 68Ga is short-lived,
generator-produced isotope that has recently become the subject
of great interest for molecular imaging applications using
positron emission tomography (PET) [12]. We have recently
shown that various siderophores can be labelled with 68Ga [13],
and 68Ga-triacetylfusarinine C (TAFC) and 68Ga-ferrioxamine
E (FOXE) are able to detect A. fumigatus infection in a rat
infection model using PET imaging [14, 15].

TAFC is a common trihydroxamate-type siderophore of
many fungal species (Aspergillus sp., Fusarium sp., etc.).
Although many different forms of fusarinines have been
detected, the cyclic acetylated trimer is regarded as the
product with the highest chemical stability [16]. Adjimani
and Emery have even shown that TAFC is able to extract
iron from other siderophores and thereby feed the producing
microorganism with iron from exogenous siderophores [17].

Ferrioxamines were originally isolated and characterised as
ferrioxamines A to H. All ferrioxamines are trihydroxamate-
type siderophores and are either cyclic or linear. FOXE is a
cyclic siderophore with high affinity to iron (III) mainly
produced by actinomycetes and other bacteria [18].

Here, we report on the characterisation and comparison of in
vitro and in vivo uptake of 68Ga-TAFC and 68Ga-FOXE in
different microorganisms and human lung cancer cells to
evaluate their specificity and sensitivity for A. fumigatus
infection imaging.

Materials and Methods

Chemicals

All commercially obtained chemicals were of the highest available
purity and were used without further purification. Siderophores
were obtained from Genaxxon BioScience GmbH (Ulm, Germany),
and 68Ge/68Ga generator, from Eckert & Ziegler Eurotope GmbH
(Berlin, Germany).

Radiolabelling

Both siderophores were labelled with 68Ga using acetate buffer at
room temperature (RT) (TAFC) or at 80 °C (FOXE) [13].
Radiochemical purity was determined using reverse-phase high-
performance liquid chromatography gradient method and/or instant

thin-layer chromatography on silica gel impregnated glass fibres, as
described previously [13–15].

Preparation of Microbial Cultures for In Vitro
Studies

A. fumigatus ATCC46645, Aspergillus terreus DSM826, Aspergil-
lus flavus ATCC9643, Rhizopus oryzae AS5 and Fusarium solani
AS94 were cultured at 37 °C in liquid Aspergillus minimal media
(AMM) [19] containing 1 % glucose and 20 mM glutamine as
carbon and nitrogen source, respectively. Iron-containing media
were supplemented with 30 μM FeSO4, whereas for iron-limiting
cultures, iron was omitted. For all other microbial strains, the iron-
replete and iron-limited main cultures were at first precultured for
18 h and inoculated with a single colony at 37 °C. Such an
inoculum was subsequently used for the culturing of the main
cultures. The preculture medium for Candida albicans
ATCC90028, Klebsiella pneumoniae and Pseudomonas aeruginosa
ATCC9027 was yeast peptone dextrose (YPD) + 0.5 % glucose;
that for Mycobacterium smegmatis mc2155, YPD + 0.5 % Tween
80; and that for Staphylococcus aureus, Roswell Park Memorial
Institute (RPMI) + 1 % casamino acids. With exception of P.
aeruginosa, the iron-replete main culture medium for all these
strains was the same as the preculture medium, and for iron-
limiting conditions, the ferrous iron chelator dipyridyl was added to
a final concentration of 200 μM. For P. aeruginosa, the main
culture media were iron-replete and iron-limiting AMM (see
above), respectively. Iron-deficient conditions were verified by
detection of extracellular siderophores production, which is
repressed by iron.

Preparation of Human Lung Cancer Cells
for In Vitro Studies

H1299 non-small cell human lung cancer cells (ATCC) were
maintained in tissue culture flasks (Cellstar, Greiner Bio-One,
Kremsmuenster, Austria) in RPMI 1640, supplemented with 10 %
(v/v) heat-inactivated FBS and 1 % (v/v) PSG at 37 °C with 5 %
CO2 in a humidified atmosphere and grown in monolayer. On the
day of the experiment, cells were removed with trypsin-EDTA and
used at a density of 1×106 cells/ml for the uptake experiments.

In Vitro Uptake of 68Ga-Siderophores in Various
Microbial Media

In vitro uptake was studied in A. fumigatus, A. flavus, A. terreus, C.
albicans, R. oryzae, F. solani, P. aeruginosa, K. pneumoniae, S.
aureus and M. smegmatis iron-deficient and iron-sufficient cultures.
For the monitoring of uptake over time, 68Ga-siderophores were
incubated in the microbial media for 10, 45 and 90 min at RT
with or without blocking solution (Fe-TAFC or Fe-FOXE) in
96-well plates (Millipore, Billerica, MA, USA). The uptake was
interrupted by filtration of the medium and rapid rinsing with
ice-cold Tris buffer. The filters were collected and counted in a
γ-counter.
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Siderophore Utilisation Growth Assay

To exemplary confirm the ability or inability to take up TAFC, we
developed a siderophore utilisation growth assay (Fig. 2). In this agar
diffusion assay, the analysed species (107 conidia of A. fumigatus or
0.2 ml of K. pneumoniae preculture, respectively) was poured in 5 ml
top agar (iron-limiting AMM medium + 0.7 % agar) on agar plates
(iron-limiting AMM medium). Subsequently, 80 μl of 0.6 mM ligand-
free TAFC solution was inoculated into a hole (5 mm diameter)
punched into the middle of the plate. The plates were then incubated at
37 °C for 30 h. The ligand-free siderophore diffuses into the growth
medium and chelates the present iron with the highest TAFC
concentration in the vicinity of the hole. The growth of microorganisms
unable to take up TAFC-iron is inhibited by high TAFC concentrations
in this assay as TAFC iron is here the only iron source present.

In Vitro Uptake of 68Ga-Siderophores in Human
Lung Cancer Cells

In vitro uptake was studied in human non-small cell lung cancer cells
H1299 type. H1299 cells were seeded at a density of 1×106 cells per
Eppendorf tube and incubated in triplicates with 68Ga-TAFC or 68Ga-
FOXE at RT for 90 min. For positive and negative control, Eppendorf
tubes containing iron-deficient and iron-sufficient cultures of A.
fumigatus were incubated in triplicates with 68Ga-labelled
siderophores at RT for 90 min in parallel. The incubation was
interrupted by 2-min centrifugation at 5,000×g. The supernatant was
collected and measured in a γ-counter. Cells sediment was disturbed
by 1 ml of glycine and subsequent whirling. Aspergillus media were
washed with 1 ml of ice-cold Tris buffer. All samples were centrifuged
for 2 min, and supernatants were measured in γ-counter. Thereafter,
1 ml of 1 M NaOH was added to human lung cancer cells, mixed and
centrifuged for 2 min. The supernatant was again collected and
measured in a γ-counter.

Animal Experiments

All animal experiments were conducted in accordance with the
regulations and guidelines of the Austrian and Dutch animal
protection laws and with the approval of the Austrian Ministry of

Science (66011/42-II/10b/2009) and Institutional Animal Welfare
Committee of the Radboud University Medical Centre Nijmegen
(revised Dutch Act on Animal Experimentation, 1997). Animal
studies were performed using Lewis rats (Charles River Laborato-
ries, Wilmington, MA)

In Vivo Imaging

In vivo uptake was studied in the A. fumigatus rat infection model
[15, 16] and in rats with sterile (turpentine oil) and bacterial (S.
aureus) intramuscular (i.m.) inflammation. An abscess was induced
in the left calf muscle with approximately 1×109 colony-forming
units of S. aureus in 0.1 ml 50:50 % suspension of autologous
blood and normal saline. A sterile inflammation was induced in the
right calf muscle by injecting 0.1 ml turpentine oil intramuscularly.
During the procedure, animals were anaesthetised. After 24 h, when
swelling of the muscle was apparent, the tracers were injected
intravenously through the tail vein.

PET imaging was obtained using an Inveon animal PET/CT
scanner (Siemens Preclinical Solutions, Knoxville, TN, USA) [15].
Static PET scans of 30 min were recorded at 30 min after i.v.
injection of 68Ga-siderophore or 2-deoxy-2-[18F]fluoro-D-glucose
(18F-FDG), the time established in the previous studies [15].

Results
Radiolabelling and In Vitro Stability

Both 68Ga-TAFC and 68Ga-FOXE showed high radiochem-
ical purity and in vitro stability as described in the previous
studies [13–15]. Figure 1 displays chemical structures of
studied 68Ga-siderophores.

In Vitro Uptake of 68Ga-Siderophores in Various
Microbial Media

In vitro uptake of 68Ga-TAFC and 68Ga-FOXE was highly
dependent on the mycelia iron load (Tables 1 and 2). Both
compounds showed rapid uptake by iron-starved A.

Fig. 1. Chemical structures of a68Ga-TAFC and b68Ga-FOXE.
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fumigatus cultures (Table 1), which could be partly blocked
with excess of Fe-siderophore and significantly lower uptake
by A. fumigatus grown under iron-sufficiency (Table 2).
Tables 1 and 2 summarise the uptake values of both 68Ga-
TAFC and 68Ga-FOXE in various microorganisms and
H1299 cells. In bacterial (P. aeruginosa, K. pneumoniae,
S. aureus, M. smegmatis) or yeast (C. albicans) cultures,
68Ga-TAFC revealed virtually no uptake in both iron-
deficient and iron-sufficient media. 68Ga-FOXE showed
similar results to 68Ga-TAFC except for S. aureus. In S.
aureus iron-deficient media, clear uptake of 68Ga-FOXE was
observed. In fungal cultures (A. flavus, A. terreus, R. oryzae,
F. solani), both 68Ga-siderophores, especially 68Ga-FOXE,
showed certain uptake in iron-deficient media, which was
substantially lower in comparison with the uptake in A.
fumigatus cultures.

Siderophore Utilisation Growth Assay

In this assay (Fig. 2), K. pneumoniae displayed in contrast to
A. fumigatus a clear growth inhibition zone, which is in
perfect agreement with the in vitro68Ga-TAFC uptake assay
that indicated that K. pneumoniae lacks TAFC uptake (see
Table 1). As a control, the plates were inoculated with ferric
TAFC instead of ligand-free TAFC. In this case, iron traces
that are not chelated by TAFC are available for growth. In
this set-up, the growth of K. pneumoniae was not inhibited,
which demonstrates that the growth inhibition is indeed due
to iron chelation by TAFC and not by a potential iron-
independent antibacterial activity of TAFC.

In Vitro Uptake of 68Ga-Siderophores in Human
Lung Cancer Cells

No uptake was observed in human lung cancer cells (H1299)
for both 68Ga-siderophores (see Tables 1 and 2). Almost all
the radioactivity was found in the supernatant containing cell

media, and negligible radioactivity was observed in the
glycine and NaOH supernatants for both compounds.

In Vivo Imaging

In vivo PET imaging in the A. fumigatus rat infection model
showed rapid focal accumulation of 68Ga-siderophores in the
lungs. Whereas no in vivo uptake in the lung region was
detected in non-infected animals, and the only visible organs
were the kidneys and bladder (see Fig. 3).

ligand free TAFC

iron-TAFC

A. fumigatus K. pneumoniae

Fig. 2. Siderophore utilisation assay demonstrating that
growth of K. pneumoniae is in contrast to that of A. fumigatus
inhibited by ligand-free TAFC.

Fig. 3. In vivo imaging of the A. fumigatus rat infection
model (left-hand side images) and non-infected (right-hand
side images) animals using a68Ga-TAFC and b68Ga-FOXE,
1 h. i.v. postinjection.
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Both 68Ga-TAFC and 68Ga-FOXE revealed moderate
clearly detectable uptake in the muscle with turpentine oil
and no uptake in the S. aureus abscess, whereas 18F-FDG
showed evident uptake in both sites of induced inflammation
(see Fig. 4).

Discussion
Invasive aspergillosis (IA), which is mainly caused by A.
fumigatus, is becoming one of the leading infective causes of
morbidity and mortality in immunocompromised patients
[20–22]. A key factor for the patient survival is an early and
accurate diagnosis of IA. Currently a number of tests and
techniques are used in clinical practice, unfortunately
lacking enough sensitivity and/or specificity that the di-
agnostics of IA continues to be highly challenging [23].

The question of specificity of the diagnostic method is
extremely important for subsequent therapy management.
There are many different types of chemotherapeutic drugs
that are used against specific pathogens or tumours. Many
radiotracers used in nuclear medicine clinical practice for
inflammation or infection imaging (e.g. 18F-FDG, 67Ga-
citrate) are not specific, even though some experimental
developments claim to be able to distinguish between
inflammation and infection [24]. We have shown that the
68Ga-labelled siderophores TAFC and FOXE are able to
image A. fumigatus infection in vivo at an early onset of
infection [15]. The mechanism of 68Ga-siderophores action
is based on the active transport via highly specific trans-
porters, which are upregulated during A. fumigatus infection,
resulting in rapid accumulation of the radiotracer at the site
of infection, allowing early detection of infection having

appropriate clinical impact. A specific uptake mechanism
utilising the nutrition pathway of the microorganisms also
potentially should allow uptake in infected tissues that are
normally not accessible by hydrophilic radiotracers such as
the brain. This specific mechanism also holds the promise
that 68Ga-siderophores could be highly specific agents for A.
fumigatus infection imaging, and we tried to address this in
the presented paper.

TAFC is a common siderophore of many pathogenic
fungal species [16]. It is interesting to note that transport
systems for fusarinines in bacteria are unknown so far [3].
Although other fungal siderophores, such as ferrichromes
and coprogen, are utilised by Escherichia coli, a fusarinine
outer membrane receptor is still lacking. Whereas TAFC is
produced and utilised by many fungal species, FOXE is a
siderophore produced by bacteria (Streptomyces spp.) and
used by many bacteria including S. aureus [25, 26], but also
by several fungal species, as we shown here. We have tested
the specificity of 68Ga-TAFC and 68Ga-FOXE in vitro on the
set of representative microorganisms as well as in the human
lung cancer cells. Both compounds showed no uptake in the
human lung cancer cells. The distinction between infection
and tumour is very important, especially considering that
one of the major groups of immunocompromised patients
suffer various malignancies including lung cancer. 68Ga-
TAFC displayed no uptake in any tested bacterial cultures
(P. aeruginosa, K. pneumoniae, S. aureus and M.
smegmatis), whereas 68Ga-FOXE was clearly taken up by
S. aureus. This finding was in contrast with subsequent in
vivo tests using the i.m. rat bacterial (S. aureus) infection
model. No in vitro uptake was observed for 68Ga-FOXE in
the remaining tested bacterial cultures (P. aeruginosa, K.

Fig. 4. Comparison of a18F-FDG, b68Ga-TAFC and c68Ga-FOXE uptake in the muscle of rats i.m. injected with turpentine oil
and S. aureus abscess.
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pneumoniae and M. smegmatis). C. albicans was chosen as
widely occurring representative of yeasts which is potential-
ly pathogenic in immunocompromised patients. Both com-
pounds were not taken up by C. albicans at all. The last
group microorganisms studied in vitro covered selected
fungal species. 68Ga-TAFC showed certain uptake in R.
oryzae and F. solani cultures, but surprisingly very low
uptake in Aspergillus species (A. flavus, A. terreus) in
relation to A. fumigatus. 68Ga-FOXE displayed evidently
higher uptake in all tested fungal media. In summary, the in
vitro uptake of both 68Ga-TAFC and 68Ga-FOXE in A.
fumigatus cultures was significantly higher compared to all
tested microorganisms and human lung cancer cells, and the
in vitro studies indicated higher specificity of 68Ga-TAFC.

In vivo PET imaging was based on our previous studies [14,
15] and was extended by testing of 68Ga-siderophores and 18F-
FDG in the rat model of sterile (turpentine oil) and bacterial (S.
aureus) i.m. inflammation. Both 68Ga-siderophores displayed
rapid and highly selective focal accumulation in the lungs of A.
fumigatus infected rats, whereas in non-infected animals, no
radioactive signal was detected in the lungs area. In vivo
imaging in the sterile and bacterial inflammationmodel showed
no in vivo uptake in the S. aureus abscess for both 68Ga-
siderophores. This finding is in contrast to the in vitro data of
68Ga-FOXE in S. aureus cultures as mentioned before. 68Ga-
TAFC and 68Ga-FOXE revealed detectable uptake in the area
of induced sterile inflammation. This uptake might be due to
the severity of the inflammation, causing non-specific extrav-
asation of the tracers. As expected, 18F-FDG showed much
higher uptake in both i.m. sites of inflammation. In vivo studies
confirmed that 68Ga-siderophores can be used for Aspergillus
infection imaging.

Conclusions
We have shown that both 68Ga-TAFC and 68Ga-FOXE can
be used for imaging of IA. Moreover, 68Ga-TAFC showed
high in vitro specificity towards A. fumigatus compared to
other tested microorganisms and human lung cancer cells.
Both 68Ga-siderophores showed highly selective accumula-
tion in the infected lungs in the A. fumigatus rat infection
model using PET imaging with 68Ga-FOXE being slightly
superior in terms of sensitivity. The final answer of the
usefulness and applicability of these compounds for early
diagnosis of IA in patients lies now in the clinical studies.
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