150 research outputs found

    Refugial peatlands in the Northern Apennines. Vegetation-environment relationships and future perspectives

    Get PDF
    Aims: We aimed to detect the environmental drivers conditioning plant diversity and to predict how modifications in habitat conditions and ongoing global warming could lead to vegetation changes or biodiversity losses in a region especially rich in peatlands despite its relatively low latitude. Study area: The study area was located in the Northern Apennines, Northern Italy (about 44 degrees 45' N; 10 degrees 20' E). The vegetation study was carried out at 12 peatland sites where 206 plots were set up. Species composition in the 206 plots were recorded in the field and classified with cluster analysis. Data on hydrology, water chemistry and peat chemistry were collected at a subset of 127 plots and statistically analysed by a multivariate ordination method. Species richness and evenness were calculated for all plots. Relationships between species composition and environmental variables were analysed by stepwise multiple regression. Results: The cluster analysis defined 17 vegetation units. Water table depth represented the major environmental factors accounting for vegetation patterns, with the vegetation units being grouped in four main blocks based on vegetation physiognomy and species composition: Sphagnum hummocks, Sphagnum lawns, fens and pools. Water chemistry and peat chemistry both presented moderate variations among the vegetation units with mean water pH ranging from 4.9 to 6.3. Concentrations of major cations in the pore water showed that all of the habitats investigated were influenced by telluric water, with no evidence of ombrotrophic conditions. Species richness and evenness both presented poor relations with the environment while responses of individual species to environmental factors were more informative on vegetation changes triggered by climate change. Conclusions: Prolonged drought events associated with high temperature in summer months are expected to exert a strong impact on peatland vegetation. The main effect of climate change on the vegetation of the peatlands investigated consists in the spreading of vascular plants at the expense of Sphagnum mosses

    Amyotrophic Lateral Sclerosis and Air Pollutants in the Province of Ferrara, Northern Italy: An Ecological Study

    Get PDF
    The etiopathogenesis of amyotrophic lateral sclerosis (ALS) is still largely unknown, but likely depends on gene-environment interactions. Among the putative sources of environmental exposure are air pollutants and especially heavy metals. We aimed to investigate the relationship between ALS density and the concentration of air pollution heavy metals in Ferrara, northern Italy. An ecological study was designed to correlate the map of ALS distribution and that of air pollutants. All ALS cases diagnosed between 2000 and 2017 (Ferrara University Hospital administrative data) were plotted by residency in 100 sub-areas, and grouped in 4 sectors: urban, rural, northwestern and along the motorway. The concentrations of silver, aluminium, cadmium, chrome, copper, iron, manganese, lead, and selenium in moss and lichens were measured and monitored in 2006 and 2011. Based on 62 ALS patients, a strong and direct correlation of ALS density was observed only with copper concentrations in all sectors and in both sexes (Pearson coefficient (ρ) = 0.758; p = 0.000002). The correlation was higher in the urban sector (ρ = 0.767; p = 0.000128), in women for the overall population (ρ = 0.782, p = 0.000028) and in the urban (ρ = 0.872, p = 0.000047) population, and for the older cohort of diagnosed patients (2000-2009) the assessment correlated with the first assessment of air pollutants in 2006 (ρ = 0.724, p = 0.008). Our data is, in part, consistent with a hypothesis linking copper pollution to ALS

    A New Generation of Hydrogen-Fueled Hybrid Propulsion Systems for the Urban Mobility of the Future

    Get PDF
    The H2-ICE project aims at developing, through numerical simulation, a new generation of hybrid powertrains featuring a hydrogen-fueled Internal Combustion Engine (ICE) suitable for 12 m urban buses in order to provide a reliable and cost-effective solution for the abatement of both CO2 and criteria pollutant emissions. The full exploitation of the potential of such a traction system requires a substantial enhancement of the state of the art since several issues have to be addressed. In particular, the choice of a more suitable fuel injection system and the control of the combustion process are extremely challenging. Firstly, a high-fidelity 3D-CFD model will be exploited to analyze the in-cylinder H2 fuel injection through supersonic flows. Then, after the optimization of the injection and combustion process, a 1D model of the whole engine system will be built and calibrated, allowing the identification of a “sweet spot” in the ultra-lean combustion region, characterized by extremely low NOx emissions and, at the same time, high combustion efficiencies. Moreover, to further enhance the engine efficiency well above 40%, different Waste Heat Recovery (WHR) systems will be carefully scrutinized, including both Organic Rankine Cycle (ORC)-based recovery units as well as electric turbo-compounding. A Selective Catalytic Reduction (SCR) aftertreatment system will be developed to further reduce NOx emissions to near-zero levels. Finally, a dedicated torque-based control strategy for the ICE coupled with the Energy Management Systems (EMSs) of the hybrid powertrain, both optimized by exploiting Vehicle-To-Everything (V2X) connection, allows targeting H2 consumption of 0.1 kg/km. Technologies developed in the H2-ICE project will enhance the know-how necessary to design and build engines and aftertreatment systems for the efficient exploitation of H2 as a fuel, as well as for their integration into hybrid powertrains

    Dementia-related genetic variants in an Italian population of early-onset Alzheimer’s disease

    Get PDF
    Early-onset Alzheimer’s disease (EOAD) is the most common form of early-onset dementia. Although three major genes have been identified as causative, the genetic contribution to the disease remains unsolved in many patients. Recent studies have identified pathogenic variants in genes representing a risk factor for developing Alzheimer’s disease (AD) and in causative genes for other degenerative dementias as responsible for EOAD. To study them further, we investigated a panel of candidate genes in 102 Italian EOAD patients, 45.10% of whom had a positive family history and 21.74% with a strong family history of dementia. We found that 10.78% of patients carried pathogenic or likely pathogenic variants, including a novel variant, in PSEN1, PSEN2, or APP, and 7.84% showed homozygosity for the ε4 APOE allele. Additionally, 7.84% of patients had a moderate risk allele in PSEN1, PSEN2, or TREM2 genes. Besides, we observed that 12.75% of our patients carried only a variant in genes associated with other neurodegenerative diseases. The combination of these variants contributes to explain 46% of cases with a definite familiarity and 32% of sporadic forms. Our results confirm the importance of extensive genetic screening in EOAD for clinical purposes, to select patients for future treatments and to contribute to the definition of overlapping pathogenic mechanisms between AD and other forms of dementia

    Isoprene and monoterpene fluxes from central amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget

    Get PDF
    We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001), a tower-based surface layer gradient (SLG) technique was applied simultaneously with a relaxed eddy accumulation (REA) system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL) were used to estimate fluxes on a landscape scale by application of the mixed layer gradient (MLG) technique. The mean daytime fluxes of organic carbon measured by REA were 2.1 mg C m^−2 h^−1 for isoprene, 0.20 mg C m^−2 h^−1 for α-pinene, and 0.39 mg C m^−2 h^−1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM).\ud \ud In contrast, the model-derived mixing ratios of VOCs were by far higher than observed, indicating that chemical processes may not be adequately represented in the model. The observed vertical gradients of isoprene and its primary degradation products methyl vinyl ketone (MVK) and methacrolein (MACR) suggest that the oxidation capacity in the tropical CBL is much higher than previously assumed. A simple chemical kinetics model was used to infer OH radical concentrations from the vertical gradients of (MVK+MACR)/isoprene. The estimated range of OH concentrations during the daytime was 3–8×10^6 molecules cm^−3, i.e., an order of magnitude higher than is estimated for the tropical CBL by current state-of-the-art atmospheric chemistry and transport models. The remarkably high OH concentrations were also supported by results of a simple budget analysis, based on the flux-to-lifetime relationship of isoprene within the CBL. Furthermore, VOC fluxes determined with the airborne MLG approach were only in reasonable agreement with those of the tower-based REA and SLG approaches after correction for chemical decay by OH radicals, applying a best estimate OH concentration of 5.5×10^6 molecules cm^−3. The SCM model calculations support relatively high OH concentration estimates after specifically being constrained by the mixing ratios of chemical constituents observed during the campaign.\ud \ud The relevance of the VOC fluxes for the local carbon budget of the tropical rainforest site during the measurements campaign was assessed by comparison with the concurrent CO2 fluxes, estimated by three different methods (eddy correlation, Lagrangian dispersion, and mass budget approach). Depending on the CO2 flux estimate, 1–6% or more of the carbon gained by net ecosystem productivity appeared to be re-emitted through VOC emissions

    The invasion history of Elodea canadensis and E. nuttallii (Hydrocharitaceae) in Italy from herbarium accessions, field records and historical literature

    Get PDF
    We analysed the invasion history of two North American macrophytes (Elodea canadensis and E. nuttallii) in Italy, through an accurate census of all available herbarium and field records, dating between 1850 and 2019, and a rich literature collection describing the initial introduction and naturalisation phase that supports the results obtained by the occurrence records. Elodea canadensis arrived in Italy before 1866 and had two invasion phases, between the 1890s and 1920s and between the 1990s and 2000s; E. nuttallii, probably arrived in the 1970s, started invading in 2000 and the invasion is still ongoing. Botanical gardens and fish farming played a crucial role in dispersal and naturalisation of both species. The current invasion range of both species is centred in northern Italy, with scattered occurrences of E. canadensis in central and southern regions. River Po represents a dispersal barrier to the Mediterranean region and a strategic monitoring site to prevent the invasion in the peninsula. The study detects differences in the niches of the two species during the introduction and naturalisation phase and a habitat switch occurred after 1980 in E. canadensis and after 2000 in E. nuttallii, during their expansion phases. For E. canadensis the switch corresponds to the second invasion round. Further research can clarify whether the second invasion round is due to confusion of the recently introduced E. nuttallii with E. canadensis, to a cryptic introduction of a new genotype, to post-introduction evolution, or just to an increased scientific interest in biological invasions
    corecore