10,494 research outputs found

    InAs/InP single quantum wire formation and emission at 1.5 microns

    Get PDF
    Isolated InAs/InP self-assembled quantum wires have been grown using in situ accumulated stress measurements to adjust the optimal InAs thickness. Atomic force microscopy imaging shows highly asymmetric nanostructures with average length exceeding more than ten times their width. High resolution optical investigation of as-grown samples reveals strong photoluminescence from individual quantum wires at 1.5 microns. Additional sharp features are related to monolayer fluctuations of the two dimensional InAs layer present during the early stages of the quantum wire self-assembling process.Comment: 4 pages and 3 figures submitted to Applied Physics Letter

    Generation of rotationally dominated galaxies by mergers of pressure-supported progenitors

    Get PDF
    Through the analysis of a set of numerical simulations of major mergers between initially non-rotating, pressure supported progenitor galaxies with a range of central mass concentrations, we have shown that: (1) it is possible to generate elliptical-like galaxies, with v/sigma > 1 outside one effective radius, as a result of the conversion of orbital- into internal-angular momentum; (2) the outer regions acquire part of the angular momentum first; (3) both the baryonic and the dark matter components of the remnant galaxy acquire part of the angular momentum, the relative fractions depend on the initial concentration of the merging galaxies. For this conversion to occur the initial baryonic component must be sufficiently dense and/or the encounter should take place on a orbit with high angular momentum. Systems with these hybrid properties have been recently observed through a combination of stellar absorption lines and planetary nebulae for kinematic studies of early-type galaxies. Our results are in qualitative agreement with such observations and demonstrate that even mergers composed of non-rotating, pressure-supported progenitor galaxies can produce early-type galaxies with significant rotation at large radii.Comment: 5 pages, 6 figures, 2 tables. Accepted for publication in A&A Letter

    On the ubiquity of trivial torsion on elliptic curves

    Get PDF
    The purpose of this paper is to give a "down--to--earth" proof of the well--known fact that a randomly chosen elliptic curve over the rationals is most likely to have trivial torsion

    Many-body GW calculations of ground-state properties: Quasi-2D electron systems and van der Waals forces

    Get PDF
    We present GW many-body results for ground-state properties of two simple but very distinct families of inhomogeneous systems in which traditional implementations of density-functional theory (DFT) fail drastically. The GW approach gives notably better results than the well-known random-phase approximation, at a similar computational cost. These results establish GW as a superior alternative to standard DFT schemes without the expensive numerical effort required by quantum Monte Carlo simulations

    Phase mapping of aging process in InN nanostructures: oxygen incorporation and the role of the zincblende phase

    Full text link
    Uncapped InN nanostructures undergo a deleterious natural aging process at ambient conditions by oxygen incorporation. The phases involved in this process and their localization is mapped by Transmission Electron Microscopy (TEM) related techniques. The parent wurtzite InN (InN-w) phase disappears from the surface and gradually forms a highly textured cubic layer that completely wraps up a InN-w nucleus which still remains from original single-crystalline quantum dots. The good reticular relationships between the different crystals generate low misfit strains and explain the apparent easiness for phase transformations at room temperature and pressure conditions, but also disable the classical methods to identify phases and grains from TEM images. The application of the geometrical phase algorithm in order to form numerical moire mappings, and RGB multilayered image reconstructions allows to discern among the different phases and grains formed inside these nanostructures. Samples aged for shorter times reveal the presence of metastable InN:O zincblende (zb) volumes, which acts as the intermediate phase between the initial InN-w and the most stable cubic In2O3 end phase. These cubic phases are highly twinned with a proportion of 50:50 between both orientations. We suggest that the existence of the intermediate InN:O-zb phase should be seriously considered to understand the reason of the widely scattered reported fundamental properties of thought to be InN-w, as its bandgap or superconductivity.Comment: 18 pages 7 figure
    corecore