19 research outputs found

    Implementation of an extended ZINB model in the study of low levels of natural gastrointestinal nematode infections in adult sheep

    Get PDF
    Background: In this study, two traits related with resistance to gastrointestinal nematodes (GIN) were measured in 529 adult sheep: faecal egg count (FEC) and activity of immunoglobulin A in plasma (IgA). In dry years, FEC can be very low in semi-extensive systems, such as the one studied here, which makes identifying animals that are resistant or susceptible to infection a difficult task. A zero inflated negative binomial model (ZINB) model was used to calculate the extent of zero inflation for FEC; the model was extended to include information from the IgA responses. Results: In this dataset, 64 % of animals had zero FEC while the ZINB model suggested that 38 % of sheep had not been recently infected with GIN. Therefore 26 % of sheep were predicted to be infected animals with egg counts that were zero or below the detection limit and likely to be relatively resistant to nematode infection. IgA activities of all animals were then used to decide which of the sheep with zero egg counts had been exposed and which sheep had not been recently exposed. Animals with zero FEC and high IgA activity were considered resistant while animals with zero FEC and low IgA activity were considered as not recently infected. For the animals considered as exposed to the infection, the correlations among the studied traits were estimated, and the influence of these traits on the discrimination between unexposed and infected animals was assessed. Conclusions: The model presented here improved the detection of infected animals with zero FEC. The correlations calculated here will be useful in the development of a reliable index of GIN resistance that could be of assistance for the study of host resistance in studies based on natural infection, especially in adult sheep, and also the design of breeding programs aimed at increasing resistance to parasites

    The potential of shifting recombination hotspots to increase genetic gain in livestock breeding

    Get PDF
    International audienceAbstractBackgroundThis study uses simulation to explore and quantify the potential effect of shifting recombination hotspots on genetic gain in livestock breeding programs.MethodsWe simulated three scenarios that differed in the locations of quantitative trait nucleotides (QTN) and recombination hotspots in the genome. In scenario 1, QTN were randomly distributed along the chromosomes and recombination was restricted to occur within specific genomic regions (i.e. recombination hotspots). In the other two scenarios, both QTN and recombination hotspots were located in specific regions, but differed in whether the QTN occurred outside of (scenario 2) or inside (scenario 3) recombination hotspots. We split each chromosome into 250, 500 or 1000 regions per chromosome of which 10% were recombination hotspots and/or contained QTN. The breeding program was run for 21 generations of selection, after which recombination hotspot regions were kept the same or were shifted to adjacent regions for a further 80 generations of selection. We evaluated the effect of shifting recombination hotspots on genetic gain, genetic variance and genic variance.ResultsOur results show that shifting recombination hotspots reduced the decline of genetic and genic variance by releasing standing allelic variation in the form of new allele combinations. This in turn resulted in larger increases in genetic gain. However, the benefit of shifting recombination hotspots for increased genetic gain was only observed when QTN were initially outside recombination hotspots. If QTN were initially inside recombination hotspots then shifting them decreased genetic gain.DiscussionShifting recombination hotspots to regions of the genome where recombination had not occurred for 21 generations of selection (i.e. recombination deserts) released more of the standing allelic variation available in each generation and thus increased genetic gain. However, whether and how much increase in genetic gain was achieved by shifting recombination hotspots depended on the distribution of QTN in the genome, the number of recombination hotspots and whether QTN were initially inside or outside recombination hotspots.ConclusionsOur findings show future scope for targeted modification of recombination hotspots e.g. through changes in zinc-finger motifs of the PRDM9 protein to increase genetic gain in production species

    Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array

    Get PDF
    16 p.Persistence of gastrointestinal nematode (GIN) infection and the related control methods have major impacts on the sheep industry worldwide. Based on the information generated with the Illumina OvineSNP50 BeadChip (50 K chip), this study aims at confirming quantitative trait loci (QTL) that were previously identified by microsatellite ‑ based genome scans and identifying new QTL and allelic variants that are associated with indicator traits of parasite resistance in adult sheep. We used a commercial half ‑ sib population of 518 Spanish Churra ewes with available data for fecal egg counts (FEC) and serum levels of immunoglobulin A (IgA) to perform different genome scan QTL mapping analyses based on classical linkage analysis (LA), a combined linkage disequilibrium and linkage analysis (LDLA) and a genome ‑ wide association study (GWAS)This work was supported by a competitive grant from the Castilla and León regional government (Junta de Castilla y León) (Ref. LE245A12-2) and the AGL2012-34437 project funded by the Spanish Ministry of Economy and Competitiveness (MINECO). M Atlija is a grateful grantee of a Marie Curie fellowship funded by the EC-funded Initial Training Network (ITN) NematodeSystemHealth (FP7-PEOPLE-2010-ITN Ref. 264639). B Gutiérrez-Gil is funded through the Spanish “Ramón y Cajal” Programme (RYC-2012-10230) from the MINECO.S

    The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)

    Get PDF
    Much of our knowledge of the drivers of immune variation, and how these responses vary over time, comes from humans, domesticated livestock or laboratory organisms. While the genetic basis of variation in immune responses have been investigated in these systems, there is a poor understanding of how genetic variation influences immunity in natural, untreated populations living in complex environments. Here, we examine the genetic architecture of variation in immune traits in the Soay sheep of St Kilda, an unmanaged population of sheep infected with strongyle gastrointestinal nematodes. We assayed IgA, IgE and IgG antibodies against the prevalent nematode Teladorsagia circumcincta in the blood plasma of > 3,000 sheep collected over 26 years. Antibody levels were significantly heritable (h2 = 0.21 to 0.57) and highly stable over an individual’s lifespan. IgA levels were strongly associated with a region on chromosome 24 explaining 21.1% and 24.5% of heritable variation in lambs and adults, respectively. This region was adjacent to two candidate loci, Class II Major Histocompatibility Complex Transactivator (CIITA) and C-Type Lectin Domain Containing 16A (CLEC16A). Lamb IgA levels were also associated with the immunoglobulin heavy constant loci (IGH) complex, and adult IgE levels and lamb IgA and IgG levels were associated with the major histocompatibility complex (MHC). This study provides evidence of high heritability of a complex immunological trait under natural conditions and provides the first evidence from a genome-wide study that large effect genes located outside the MHC region exist for immune traits in the wild

    Diagnóstico de nematodos gastrointestinales en ovejas con bajas cargas parasitarias y su relación con factores climáticos

    No full text
    1 página.-- Trabajo presentado al XVIII Congreso de la Sociedad Española de Parasitología. Encuentro Internacional de Parasitología de España, Francia, Italia y Portugal (Gran Canaria, 17-20 septiembre, 2013).Peer Reviewe

    Implementation of an extended ZINB model in the study of low levels of natural gastrointestinal nematode infections in adult sheep

    No full text
    Background: In this study, two traits related with resistance to gastrointestinal nematodes (GIN) were measured in 529 adult sheep: faecal egg count (FEC) and activity of immunoglobulin A in plasma (IgA). In dry years, FEC can be very low in semi-extensive systems, such as the one studied here, which makes identifying animals that are resistant or susceptible to infection a difficult task. A zero inflated negative binomial model (ZINB) model was used to calculate the extent of zero inflation for FEC; the model was extended to include information from the IgA responses. Results: In this dataset, 64 % of animals had zero FEC while the ZINB model suggested that 38 % of sheep had not been recently infected with GIN. Therefore 26 % of sheep were predicted to be infected animals with egg counts that were zero or below the detection limit and likely to be relatively resistant to nematode infection. IgA activities of all animals were then used to decide which of the sheep with zero egg counts had been exposed and which sheep had not been recently exposed. Animals with zero FEC and high IgA activity were considered resistant while animals with zero FEC and low IgA activity were considered as not recently infected. For the animals considered as exposed to the infection, the correlations among the studied traits were estimated, and the influence of these traits on the discrimination between unexposed and infected animals was assessed. Conclusions: The model presented here improved the detection of infected animals with zero FEC. The correlations calculated here will be useful in the development of a reliable index of GIN resistance that could be of assistance for the study of host resistance in studies based on natural infection, especially in adult sheep, and also the design of breeding programs aimed at increasing resistance to parasites. © 2016 The Author(s)

    A genome scan with the ovine 50K SNP-CHIP for the detection of QTL influencing resistance to gastrointestinal nematodes in Spanish churra sheep: linkage analysis for faecal egg count

    No full text
    3 páginas, 1 tabla, 1 figura.-- Trabajo presentado a las XV Jornadas sobre Producción Animal AIDA (Zaragoza, 14 al 15 de mayo, 2013).Infections with gastrointestinal nematodes (GIN) remain one of the most prevalent parasitic diseases causing major economic losses in the sheep industries worldwide. In the last years, the increasing prevalence of resistance to anthelmintic has led to the search for alternative control methods such as selective breeding for increased GIN resistance. This study presents a linkage analysis for detection of QTL for faecal egg count (FEC), the traditional indicator trait commonly used to assess the level of GIN by the number of eggs per gram of faeces, in a commercial population of Spanish Churra sheep. The resource population included 596 adult ewes from 21 flocks and 15 half-sib families of the selection nucleus of the Churra sheep breeding programme. Faecal samples were collected from the studied animals for which genotypes for the Illumina OvineSNP50 BeadChip were already available. Chromosome-wise significant QTL were detected on chromosomes 4, 6, 8 and 25. The QTL identified on the first two of these chromosomes showed interesting coincidences with QTL previously reported in sheep for indicators of resistance to GIN. The results reported here suggest that the most significant QTL previously reported for FEC in Churra sheep by a microsatellite-based genome scan, on chromosome 6, is confirmed in the new analysed population.Este trabajo está financiado por los proyectos LE245- A12-2 financiado por la Junta de Castilla y León y NematodeSystemHealth-Initial Training Network de la Comisión Europea. M.A. Está financiada por el proyecto NematodeSystemHealth-Initial Training Network.Peer reviewe
    corecore