56 research outputs found

    Optical absorption in boron clusters B6_{6} and B6+_{6}^{+} : A first principles configuration interaction approach

    Full text link
    The linear optical absorption spectra in neutral boron cluster B6_{6} and cationic B6+_{6}^{+} are calculated using a first principles correlated electron approach. The geometries of several low-lying isomers of these clusters were optimized at the coupled-cluster singles doubles (CCSD) level of theory. With these optimized ground-state geometries, excited states of different isomers were computed using the singles configuration-interaction (SCI) approach. The many body wavefunctions of various excited states have been analysed and the nature of optical excitation involved are found to be of collective, plasmonic type.Comment: 22 pages, 38 figures. An invited article submitted to European Physical Journal D. This work was presented in the International Symposium on Small Particles and Inorganic Clusters - XVI, held in Leuven, Belgiu

    Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete

    Get PDF
    Fly ash-based geopolymer (FAGP) and alkali-activated slag (AAS) concrete are produced by mixing alkaline solutions with aluminosilicate materials. As the FAGP and AAS concrete are free of Portland cement, they have a low carbon footprint and consume low energy during the production process. This paper compares the engineering properties of normal strength and high strength FAGP and AAS concrete with OPC concrete. The engineering properties considered in this study included workability, dry density, ultrasonic pulse velocity (UPV), compressive strength, indirect tensile strength, flexural strength, direct tensile strength, and stress-strain behaviour in compression and direct tension. Microstructural observations using scanning electronic microscopy (SEM) are also presented. It was found that the dry density and UPV of FAGP and AAS concrete were lower than those of OPC concrete of similar compressive strength. The tensile strength of FAGP and AAS concrete was comparable to the tensile strength of OPC concrete when the compressive strength of the concrete was about 35 MPa (normal strength concrete). However, the tensile strength of FAGP and AAS concrete was higher than the tensile strength of OPC concrete when the compressive strength of concrete was about 65 MPa (high strength concrete). The modulus of elasticity of FAGP and AAS concrete in compression and direct tension was lower than the modulus of elasticity of OPC concrete of similar compressive strength. The SEM results indicated that the microstructures of FAGP and AAS concrete were more compact and homogeneous than the microstructures of OPC concrete at 7 days, but less compact and homogeneous than the microstructures of OPC concrete at 28 days for the concrete of similar compressive strength

    B12Hn and B12Fn: planar vs icosahedral structures

    Get PDF
    Using density functional theory and quantum Monte Carlo calculations, we show that B12Hn and B12Fn (n = 0 to 4) quasi-planar structures are energetically more favorable than the corresponding icosahedral clusters. Moreover, we show that the fully planar B12F6 cluster is more stable than the three-dimensional counterpart. These results open up the possibility of designing larger boron-based nanostructures starting from quasi-planar or fully planar building blocks

    Comparison of Unit Price Method and Unit Area Cost Method for Construction Cost Estimation

    No full text
    In the construction industry, increasing competition environment has led to decrease in the profit share of the projects. Accordingly, importance of construction cost estimation works has been increased for both the employer and the contractor. The purpose of this study has been to determine and compare the construction cost estimations obtained by widely used databases, "unit price method" (UPM) and "unit area cost method" (UACM) in Turkey. For this purpose, construction data from 420 projects, which were procured in accordance with the Public Tender Law no 4734 by the Turkish Ministry of Environment and Urbanism and completed between 2003 and 2011, were reviewed. Root mean square error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R-2) were calculated for the comparison of actual and estimated cost values. Consequently, RMSE and MAPE values from UPM were underestimated with the ratio of 13.57% and 1.73% than UACM. Although UPM showed better performance than the UACM, it is not at a satisfactory level

    The influence of elevated temperature on strength and microstructure of high strength concrete containing ground pumice and metakaolin

    No full text
    A laboratory study is performed to evaluate the influence of elevated temperature on the strength and microstructural properties of high strength concretes (HSCs) containing ground pumice (GP), and blend of ground pumice and metakaolin (MK) mixture. Twelve different mixtures of HSCs containing GP and MM were produced, water-to-binder ratio was kept constant as 0.20. Hardened concrete specimens were exposed to 250 degrees C, 500 degrees C and 750 degrees C elevated temperatures increased with a heating rate of 5 degrees C/min. Ultrasound pulse velocity (U-pv), compressive strength (f(c)), flexural strength (f(fs)) and splitting tensile strength (f(sts)) values of concrete samples were measured on unheated control concrete and after air-cooling period of heated concrete. The crack formation and alterations in the matrix, interface and aggregate of HSCs were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and polarized light microscope (PLM) analyses. XRD, SEM and PLM analyses have shown that, increasing target temperature result with decrease in mechanical properties i.e. U-pv, f(c), f(fs) and f(sts) values. Elevated temperature also results with crack formation, and increasing target temperature caused more cracks. Alterations in the matrix, interface and aggregate were, also observed by these analyses. The experimental results indicate that concrete made with MK + GP blend together as a replacement of cement in mass basis behaved better than control concrete made with cement only, and concrete containing only GP as a cement replacement. (C) 2016 Elsevier Ltd. All rights reserved

    Investigation of Properties of Engineered Cementitious Composites Incorporating High Volumes of Fly Ash and Metakaolin

    No full text
    This study was carried out to develop engineered cementitious composites (ECCs) incorporating binary blends of high volumes of fly ash (FA) and metakaolin (MK) for the purpose of achieving low drying shrinkage and high composite strength with adequate ductility and improved durability. ECC, an ultra-ductile cement-based composite reinforced with short random fibers, exhibits strain-hardening and multiple-cracking behavior in uniaxial tension and bending. Standard (M45) and high-volume FA ECC mixtures are typically produced by replacing portland cement (PC) with 55% and 70% of FA, respectively (FA-to-cement ratio of 1.2 and 2.2 by weight). In this study, the (FA + MK)/PC ratio was maintained at 1.2 and 2.2 and the FA/MK ratio was maintained at 4.5. Two replacement levels of MK with FA were adopted. The investigation used 10% and 12.5% MK by weight of total binder content, respectively. For the purposes of comparison, standard and high-volume FA ECCs were also studied. To determine the effect of binary blends of FA and MK on the properties of ECC, this study focused on the evaluation of free drying shrinkage, flexural and compressive strengths, porosity and water absorption (WA), sorptivity, and chloride-ion permeability. The experimental results showed that the drying shrinkage, porosity, absorption, sorptivity, and chloride-ion permeability properties were significantly reduced with the use of binary blends of FA and MK, while ECC's ultra-high ductility and strain-hardening properties were preserved at an adequate level
    corecore