16 research outputs found

    Isolation, Identification, and Characterization of Phosphate-Solubilizing Bacteria from Tunisian Soils

    Get PDF
    Soil microorganisms play an important role in maintaining natural ecological balance through active participation in carbon, nitrogen, sulfur, and phosphorous cycles. Phosphate-solubilizing bacteria (PSB) are of high importance in the rhizosphere, enhancing the solubilization of inorganic phosphorus complexes into soluble forms available for plant nutrition. The investigation of this species of bacteria is of major interest in agriculture, as they can be used as biofertilizers for crops. In the present study, 28 isolates of PSB were obtained after the phosphate enrichment of soil samples from five Tunisian regions. Five PSB species were identified by 16S rRNA gene sequencing including Pseudomonas fluorescens, P. putida, and P. taiwanensis, Stenotrophomonas maltophilia, and Pantoea agglomerans. Solid and liquid Pikovskaya’s (PVK) and National Botanical Research Institute’s (NBRIP) media containing insoluble tricalcium phosphate were used for the evaluation of the phosphate solubilization ability of the bacterial isolates by two methods: visual evaluation of the solubilization zone around colonies (halo) and determination of solubilized phosphates in liquid medium by the colorimetric method of the vanado-molybdate yellow. Based on the results of the halo method, the isolate of each species that showed the higher phosphate solubilization index was selected for evaluation of phosphate solubilization by the colorimetric method. In the liquid media, the bacterial isolates showed phosphate solubilization ranging from 535.70 to 618.57 µg mL−1 in the NBRIP medium, and 374.20 to 544.28 µg mL−1 in the PVK medium, with the highest values produced by P. fluorescens. The best phosphate solubilization ability and higher reduction in broth pH, which indicates higher organic acid production, were achieved in NBRIP broth for most of the PSB. Strong correlations were observed between the average capability of PSB to solubilize phosphates and both the pH and total phosphorous content in the soil. The production of the hormone indole acetic acid (IAA), which can promote plant growth, was observed for all five PSB species. Among them, P. fluorescens obtained from the forest soil of northern Tunisia showed the highest production of IAA (50.4 ± 0.9 µg mL−1).This research was partially supported by the Smart Cities Research Center under the grant UIDB/05567/2020 funded by The Portuguese Foundation for Science and Technology (FCT—Fundação para a Ciência e a Tecnologia, Portugal). The authors wish to acknowledge the Ministry of Higher Education and Scientific Research in Tunisia, which has facilitated the work performed.info:eu-repo/semantics/publishedVersio

    Organic Photovoltaic Modules Installation: Italy and Algeria Case Studies

    No full text
    We here report our latest achievements regarding some installations of ASCA® by ARMOR Organic Photovoltaic Modules realized by roll to roll printing. The performances of ASCA® OPV Modules were measured in two sites, in Italy and in Algeria, and monitored over time. We found that 10-20 kWh/m2 of total irradiation are needed to reach nominal performances due to photo-stabilization behavior. Furthermore, a 1.15 kW OPV power plant was realized, vertically integrated on a building wall, and measurements data were collected for each string. Special attention is paid to compare, in terms of energy yield (kWh/kWp), the OPV Plant with a c-Si PV Plant, already present on the same site: OPV showed a gain of 12% on energy yield during the monitoring period

    Removal of phenolic compounds in olive mill wastewater by silica-alginate-fungi biocomposites

    No full text
    This study aims to attempt a treatment strategy based on fungi immobilized on silica-alginate (biocomposites) for removal of phenolic compounds in olive oil mill wastewater (OMW), OMW supplemented (OMWS) with phenolic compounds and water supplemented (WS) with phenolic compounds, thus decreasing its potential impact in the receiving waters. Active (alive) or inactive (death by sterilization) Pleurotus sajor caju was encapsulated in alginate beads. Five beads containing active and inactive fungus were placed in a mold and filled with silica hydrogel (biocomposites). The biocomposites were added to batch reactors containing the OMW, OMWS and WS. The treatment of OMW, OMWS and WS by active and inactive biocomposites was performed throughout 28 days at 25 C. The efficiency of treatment was evaluated by measuring the removal of targeted organic compounds, chemical oxygen demand (COD) and relative absorbance ratio along the time. Active P. sajor caju biocomposites were able to remove 64.6–88.4 % of phenolic compounds from OMW and OMWS and 91.8–97.5 % in water. Furthermore, in the case of OMW there was also a removal of 30.0–38.1 % of fatty acids, 68.7 % of the sterol and 35 % of COD. The silica–alginate–fungi biocomposites showed a high removal of phenolic compounds from OMW and water. Furthermore, in the application of biocomposites to the treatment of OMW it was observed also a decrease on the concentration of fatty acids and sterols as well as a reduction on the COD
    corecore