218 research outputs found

    Dracaena Decline and Root Rot

    Get PDF
    Isolation and inoculation studies attempted to identify the cause of dracaena decline. Suspicion was cast on Pythium graminicola, but further studies were indicated as needed to resolve the decline problem

    1966-1967 chrysanthemum cultivar trials

    Get PDF

    Proteomic risk markers for coronary heart disease and stroke: validation and mediation of randomized trial hormone therapy effects on these diseases

    Get PDF
    Background: We previously reported mass spectrometry-based proteomic discovery research to identify novel plasma proteins related to the risk of coronary heart disease (CHD) and stroke, and to identify proteins with concentrations affected by the use of postmenopausal hormone therapy. Here we report CHD and stroke risk validation studies for highly ranked proteins, and consider the extent to which protein concentration changes relate to disease risk or provide an explanation for hormone therapy effects on these outcomes. Methods: Five proteins potentially associated with CHD (beta-2 microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1), thrombospondin-1(THBS1), complement factor D pre-protein (CFD), and insulin-like growth factor binding protein 1 (IGFBP1)) and five potentially associated with stroke (B2M, IGFBP2, IGFBP4, IGFBP6, and hemopexin (HPX)) had high discovery phase significance level ranking and an available ELISA assay, and were included in case-control validation studies within the Women’s Health Initiative (WHI) hormone therapy trials. Protein concentrations, at baseline and 1 year following randomization, were assessed for 358 CHD cases and 362 stroke cases, along with corresponding disease-free controls. Disease association, and mediation of estrogen-alone and estrogen plus progestin effects on CHD and stroke risk, were assessed using logistic regression. Results: B2M, THBS1, and CFD were confirmed (P <0.05) as novel CHD risk markers, and B2M, IGFBP2, and IGFBP4 were confirmed as novel stroke disease risk markers, while the assay for HPX proved to be unreliable. The change from baseline to 1 year in B2M was associated (P <0.05) with subsequent stroke risk, and trended similarly with subsequent CHD risk. Change from baseline to 1 year in IGFBP1 was also associated with CHD risk, and this change provided evidence of hormone therapy effect mediation. Conclusions: Plasma B2M is confirmed to be an informative risk marker for both CHD and stroke. The B2M increase experienced by women during the first year of hormone therapy trial participation conveys cardiovascular disease risk. The increase in IGFBP1 similarly conveys CHD risk, and the magnitude of the IGFBP1 increase following hormone therapy may be a mediator of hormone therapy effects. Plasma THBS1 and CFD are confirmed as CHD risk markers, and plasma IGFBP4 and IGFBP2 are confirmed as stroke risk markers. Clinical trials registration ClinicalTrials.gov identifier: NCT0000061

    Association of Glycemic Index and Glycemic Load With Risk of Incident Coronary Heart Disease Among Whites and African Americans With and Without Type 2 Diabetes: The Atherosclerosis Risk in Communities Study

    Get PDF
    This study examined whether high glycemic index (GI) and glycemic load (GL) diets are associated with increased risk of developing CHD in Whites and African Americans with and without type 2 diabetes

    Application of serum proteomics to the Women's Health Initiative conjugated equine estrogens trial reveals a multitude of effects relevant to clinical findings

    Get PDF
    Abstract Background The availability of serum collections from the Women's Health Initiative (WHI) conjugated equine estrogens (CEE) randomized controlled trial provides an opportunity to test the potential of in-depth quantitative proteomics to uncover changes in the serum proteome related to CEE and to assess their relevance to trial findings, including elevations in the risk of stroke and venous thromboembolism and a reduction in fractures. Methods Five independent large scale quantitative proteomics analyses were performed, each comparing a set of pooled serum samples collected from 10 subjects, 1 year following initiation of CEE at 0.625 mg/d, relative to their baseline pool. A subset of proteins that exhibited increased levels with CEE by quantitative proteomics was selected for validation studies. Results Of 611 proteins quantified based on differential stable isotope labeling, the levels of 116 (19%) were changed after 1 year of CEE (nominal P < 0.05), while 64 of these had estimated false discovery rates <0.05. Most of the changed proteins were not previously known to be affected by CEE and had relevance to processes that included coagulation, metabolism, osteogenesis, inflammation, and blood pressure maintenance. To validate quantitative proteomic data, 14 proteins were selected for ELISA. Findings for ten - IGF1, IGFBP4, IGFBP1, IGFBP2, F10, AHSG, GC, CP, MMP2, and PROZ - were confirmed in the initial set of 50 subjects and further validated in an independent set of 50 additional subjects who received CEE. Conclusions CEE affected a substantial fraction of the serum proteome, including proteins with relevance to findings from the WHI CEE trial related to cardiovascular disease and fracture. Clinical Trials Registration ClinicalTrials.gov identifier: NCT00000611http://deepblue.lib.umich.edu/bitstream/2027.42/112914/1/13073_2009_Article_113.pd

    Novel proteins associated with risk for coronary heart disease or stroke among postmenopausal women identified by in-depth plasma proteome profiling

    Get PDF
    Background: Coronary heart disease (CHD) and stroke were key outcomes in the Women's Health Initiative (WHI) randomized trials of postmenopausal estrogen and estrogen plus progestin therapy. We recently reported a large number of changes in blood protein concentrations in the first year following randomization in these trials using an in-depth quantitative proteomics approach. However, even though many affected proteins are in pathways relevant to the observed clinical effects, the relationships of these proteins to CHD and stroke risk among postmenopausal women remains substantially unknown. Methods: The same in-depth proteomics platform was applied to plasma samples, obtained at enrollment in the WHI Observational Study, from 800 women who developed CHD and 800 women who developed stroke during cohort follow-up, and from 1-1 matched controls. A plasma pooling strategy, followed by extensive fractionation prior to mass spectrometry, was used to identify proteins related to disease incidence, and the overlap of these proteins with those affected by hormone therapy was examined. Replication studies, using enzyme-linked-immunosorbent assay (ELISA), were carried out in the WHI hormone therapy trial cohorts. Results: Case versus control concentration differences were suggested for 37 proteins (nominal PP < 0.05) for CHD, with three proteins, beta-2 microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1), and insulin-like growth factor binding protein acid labile subunit (IGFALS) having a false discovery rate < 0.05. Corresponding numbers for stroke were 47 proteins with nominal PP < 0.05, three of which, apolipoprotein A-II precursor (APOA2), peptidyl-prolyl isomerase A (PPIA), and insulin-like growth factor binding protein 4 (IGFBP4), have a false discovery rate < 0.05. Other proteins involved in insulin-like growth factor signaling were also highly ranked. The associations of B2M with CHD (PP < 0.001) and IGFBP4 with stroke (PP = 0.005) were confirmed using ELISA in replication studies, and changes in these proteins following the initiation of hormone therapy use were shown to have potential to help explain hormone therapy effects on those diseases. Conclusions: In-depth proteomic discovery analysis of prediagnostic plasma samples identified B2M and IGFBP4 as risk markers for CHD and stroke respectively, and provided a number of candidate markers of disease risk and candidate mediators of hormone therapy effects on CHD and stroke. Clinical Trials Registration ClinicalTrials.gov identifier: NCT0000061

    Postmenopausal estrogen and progestin effects on the serum proteome

    Get PDF
    Background: Women's Health Initiative randomized trials of postmenopausal hormone therapy reported intervention effects on several clinical outcomes, with some important differences between estrogen alone and estrogen plus progestin. The biologic mechanisms underlying these effects, and these differences, have yet to be fully elucidated. Methods: Baseline serum samples were compared with samples drawn 1 year later for 50 women assigned to active hormone therapy in both the estrogen-plus-progestin and estrogen-alone randomized trials, by applying an in-depth proteomic discovery platform to serum pools from 10 women per pool. Results: In total, 378 proteins were quantified in two or more of the 10 pooled serum comparisons, by using strict identification criteria. Of these, 169 (44.7%) showed evidence (nominal P less than 0.05) of change in concentration between baseline and 1 year for one or both of estrogen-plus-progestin and estrogen-alone groups. Quantitative changes were highly correlated between the two hormone-therapy preparations. A total of 98 proteins had false discovery rates less than 0.05 for change with estrogen plus progestin, compared with 94 for estrogen alone. Of these, 84 had false discovery rates less than 0.05 for both preparations. The observed changes included multiple proteins relevant to coagulation, inflammation, immune response, metabolism, cell adhesion, growth factors, and osteogenesis. Evidence of differential changes also was noted between the hormone preparations, with the strongest evidence in growth factor and inflammation pathways. Conclusions: Serum proteomic analyses yielded a large number of proteins similarly affected by estrogen plus progestin and by estrogen alone and identified some proteins and pathways that appear to be differentially affected between the two hormone preparations; this may explain their distinct clinical effects

    Regional and cellular gene expression changes in human Huntington's disease brain

    Get PDF
    Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)]. The greatest number and magnitude of differentially expressed mRNAs were detected in the caudate nucleus, followed by motor cortex, then cerebellum. Thus, the molecular phenotype of HD generally parallels established neuropathology. Surprisingly, no mRNA changes were detected in prefrontal association cortex, thereby revealing subtleties of pathology not previously disclosed by histological methods. To establish that the observed changes were not simply the result of cell loss, we examined mRNA levels in laser-capture microdissected neurons from Grade 1 HD caudate compared to control. These analyses confirmed changes in expression seen in tissue homogenates; we thus conclude that mRNA changes are not attributable to cell loss alone. These data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative disease
    • 

    corecore