344 research outputs found
Multi-Scale Simulation of Viscoelastic Fiber-Reinforced Composites
This paper presents an effective algorithm to simulate the anisotropic viscoelastic behavior of a fiber-reinforced composite including the influence of the local geometric properties, like fiber-orientation and volume fraction. The considered composites consist of a viscoelastic matrix which is reinforced by elastic fibers. The viscoelastic composite behavior results anisotropic due to the local anisotropic fiber-orientations. The influence of the local time-dependent viscoelastic properties are captured within two elastic microscopic calculations for each fiberorientation in the composite part. These calculations can be performed within a preprocessing step, and thus no expensive, time-dependent viscoelastic multi-scale simulation has to be carried out to incorporate the local properties. The advantage of the presented approach is that the locally varying microscopic properties can be captured in a one-scale simulation within a commercial finite element tool like ABAQUS
A room temperature 19-channel magnetic field mapping device for cardiac signals
We present a multichannel cardiac magnetic field imaging system built in
Fribourg from optical double-resonance Cs vapor magnetometers. It consists of
25 individual sensors designed to record magnetic field maps of the beating
human heart by simultaneous measurements on a grid of 19 points over the chest.
The system is operated as an array of second order gradiometers using
sophisticated digitally controlled feedback loops.Comment: 3 pages, 3 figures, submitted to Applied Physics Letter
Domain Dynamics of Magnetic Films with Perpendicular Anisotropy
We study the magnetic properties of nanoscale magnetic films with large
perpendicular anisotropy comparing polarization microscopy measurements on
Co_28Pt_72 alloy samples based on the magneto-optical Kerr effect with Monte
Carlo simulations of a corresponding micromagnetic model. We focus on the
understanding of the dynamics especially the temperature and field dependence
of the magnetisation reversal process. The experimental and simulational
results for hysteresis, the reversal mechanism, domain configurations during
the reversal, and the time dependence of the magnetisation are in very good
qualitative agreement. The results for the field and temperature dependence of
the domain wall velocity suggest that for thin films the hysteresis can be
described as a depinning transition of the domain walls rounded by thermal
activation for finite temperatures.Comment: 7 pages Latex, Postscript figures included, accepted for publication
in Phys.Rev.B, also availible at:
http://www.thp.Uni-Duisburg.DE/Publikationen/Publist_Us_R.htm
Interactions of Ar(9+) and metastable Ar(8+) with a Si(100) surface at velocities near the image acceleration limit
Auger LMM spectra and preliminary model simulations of Ar(9+) and metastable
Ar(8+) ions interacting with a clean monocrystalline n-doped Si(100) surface
are presented. By varying the experimental parameters, several yet undiscovered
spectroscopic features have been observed providing valuable hints for the
development of an adequate interaction model. On our apparatus the ion beam
energy can be lowered to almost mere image charge attraction. High data
acquisition rates could still be maintained yielding an unprecedented
statistical quality of the Auger spectra.Comment: 34 pages, 11 figures, http://pikp28.uni-muenster.de/~ducree
How can we learn foreign language vocabulary more easily?
The authors would like to thank those who assisted in the translation of the articles in this Collection to make them more accessible to kids outside English-speaking countries, and for the Jacobs Foundation for providing the funds necessary to translate the articles. For this article, they would especially like to thank Nienke van Atteveldt and Sabine Peters for the Dutch translation. This work was funded by the German Research Foundation grant KR 3735/3-1, a Schulbezogene Forschung grant from the Saxony Zentrum für Lehrerbildung und Schulforschung (ZLS), and an Erasmus Mundus Postdoctoral Fellowship in Auditory Cognitive Neuroscience. BM also supported by the European Research Council Consolidator Grant SENSOCOM 647051 to KvK.Peer reviewedPublisher PD
Identifying Ionic and Electronic Charge Transfer at Oxide Heterointerfaces
The ability to tailor oxide heterointerfaces has led to novel properties in low-dimensional oxide systems. A fundamental understanding of these properties is based on the concept of electronic charge transfer. However, the electronic properties of oxide heterointerfaces crucially depend on their ionic constitution and defect structure: ionic charges contribute to charge transfer and screening at oxide interfaces, triggering a thermodynamic balance of ionic and electronic structures. Quantitative understanding of the electronic and ionic roles regarding charge-transfer phenomena poses a central challenge. Here, the electronic and ionic structure is simultaneously investigated at the prototypical charge-transfer heterointerface, LaAlO3/SrTiO3. Applying in situ photoemission spectroscopy under oxygen ambient, ionic and electronic charge transfer is deconvoluted in response to the oxygen atmosphere at elevated temperatures. In this way, both the rich and variable chemistry of complex oxides and the associated electronic properties are equally embraced. The interfacial electron gas is depleted through an ionic rearrangement in the strontium cation sublattice when oxygen is applied, resulting in an inverse and reversible balance between cation vacancies and electrons, while the mobility of ionic species is found to be considerably enhanced as compared to the bulk. Triggered by these ionic phenomena, the electronic transport and magnetic signature of the heterointerface are significantly altered
One- and two-photon resonant spectroscopy of hydrogen and anti-hydrogen atoms in external electric fields
The resonant spectra of hydrogen and anti-hydrogen atoms in the presence of
an external electric field are compared theoretically. It is shown that
nonresonant corrections to the transition frequency contain terms linear in the
electric field. The existence of these terms does not violate space and time
parity and leads to a difference in the resonant spectroscopic measurements for
hydrogen and anti-hydrogen atoms in an external electric field. The one-photon
1s-2p and the two-photon 1s-2s resonances are investigated
Recommended from our members
Silicon Powder-Based Wafers for Low-Cost Photovoltaics: Laser Treatments and Nanowire Etching
In this study, laser-treated polycrystalline Si (pc-Si) wafers, fabricated by wire sawing of hot-pressed ingots sintered from Si powder, have been investigated. As-cut wafers and those with high-quality thin Si layers deposited on top of them by e-beam have been subjected to laser irradiation to clarify typical trends of structural modifications caused by laser treatments. Moreover, possibility to use laser-treated Si powder-based substrates for fabrication of advanced Si structures has been analysed. It is established that (i) Si powder-based wafers with thicknesses 180 μm can be fully (from the front to back side) or partly (subsurface region) remelted by a diode laser and grain sizes in laser-treated regions can be increased; (ii) a high-quality top layer can be fabricated by crystallization of an additional a-Si layer deposited by e-beam evaporation on top of the pc-Si; and (iii) silicon nanowires can be formed by metal-assisted wet chemical etching (MAWCE) of polished Si powder-based wafers and as-cut wafers irradiated with medium laser power, while a surface texturing on the as-cut pc-Si wafers occur, and no nanowires can form in the region subject to a liquid phase crystallization (LPC) caused by high-power laser treatments
High frequencies of PMN-MDSCs are associated with low suppressive capacity in advanced stages of HIV-1 infection
Background
Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are an immature cell type that inhibits the effector functions of T lymphocytes in chronic HIV infection. A well-known immunological feature of the disease course is the development of immune exhaustion, which is correlated with excessive immune activation in late-stage disease. Here, we hypothesized that immune exhaustion would also affect PMN-MDSCs in late-stage HIV-1 infection.
Methods
We evaluated untreated chronically HIV-infected patients (progressors, n = 10) and control groups (controllers, patients with non-small cell lung carcinoma and healthy controls, n = 16) with regard to levels of PMN-MDSCs and their inhibitory potential. Additionally, we studied CD8 T cell effector functions (interferon-gamma, TNF alpha, IL-2 and CD107) and parameters of CD8 T cell activation (CD38 and HLA-DR) and exhaustion (PD-1 and LAG-3) by flow cytometry. Plasma inflammation markers analyzed here were IL-6, IL-8, soluble CD14, highly sensitive CRP, and cystatin C.
Results
Coincubation experiments with isolated PMN-MDSCs led to a significant inhibition of CD8 T cell proliferation (p < 0.0001), with a significant correlation between PMN-MDSC frequency and suppressive capacity: the higher the frequency of PMN-MDSCs was, the lower the suppressive capacity (rho = 0.51, p = 0.0082). Stratifying all study subjects into subgroups with PMN-MDSC frequencies above or below 2.5% resulted in a significantly increased suppressive capacity in patients with frequencies below 2.5% (p = 0.021). While there was no correlation with the cellular activation markers CD38 and HLA-DR, high IL-8 levels were significantly associated with high PMN-MDSC frequencies (rho = 0.52, p = 0.0074) and low suppressive capacity (rho = 0.47, p = 0.019).
Conclusions
In this study, we demonstrate for the first time that PMN-MDSCs show limited effector functions in advanced disease stages of HIV infection. The hyperactive immune state is associated with this loss of function. However, we show an association with the proinflammatory cytokine IL-8, which is an important factor for the migration and adhesion of polymorphonuclear cells
- …