42 research outputs found

    Scaling and the Fractal Geometry of Two-Dimensional Quantum Gravity

    Get PDF
    We examine the scaling of geodesic correlation functions in two-dimensional gravity and in spin systems coupled to gravity. The numerical data support the scaling hypothesis and indicate that the quantum geometry develops a non-perturbative length scale. The existence of this length scale allows us to extract a Hausdorff dimension. In the case of pure gravity we find d_H approx. 3.8, in support of recent theoretical calculations that d_H = 4. We also discuss the back-reaction of matter on the geometry.Comment: 16 pages, LaTeX format, 8 eps figure

    Ising Model Coupled to Three-Dimensional Quantum Gravity

    Full text link
    We have performed Monte Carlo simulations of the Ising model coupled to three-dimensional quantum gravity based on a summation over dynamical triangulations. These were done both in the microcanonical ensemble, with the number of points in the triangulation and the number of Ising spins fixed, and in the grand canoncal ensemble. We have investigated the two possible cases of the spins living on the vertices of the triangulation (``diect'' case) and the spins living in the middle of the tetrahedra (``dual'' case). We observed phase transitions which are probably second order, and found that the dual implementation more effectively couples the spins to the quantum gravity.Comment: 11 page

    Three Dimensional Quantum Gravity Coupled to Ising Matter

    Get PDF
    We establish the phase diagram of three--dimensional quantum gravity coupled to Ising matter. We find that in the negative curvature phase of the quantum gravity there is no disordered phase for ferromagnetic Ising matter because the coordination number of the sites diverges. In the positive curvature phase of the quantum gravity there is evidence for two spin phases with a first order transition between them.Comment: 12 page

    Three-Dimensional Quantum Gravity Coupled to Gauge Fields

    Get PDF
    We show how to simulate U(1) gauge fields coupled to three-dimensional quantum gravity and then examine the phase diagram of this system. Quenched mean field theory suggests that a transition separates confined and deconfined phases (for the gauge matter) in both the negative curvature phase and the positive curvature phase of the quantum gravity, but numerical simulations find no evidence for such transitions.Comment: 16 page

    Numerical simulation of stochastic vortex tangles

    Full text link
    We present the results of simulation of the chaotic dynamics of quantized vortices in the bulk of superfluid He II. Evolution of vortex lines is calculated on the base of the Biot-Savart law. The dissipative effects appeared from the interaction with the normal component, or/and from relaxation of the order parameter are taken into account. Chaotic dynamics appears in the system via a random forcing, e.i. we use the Langevin approach to the problem. In the present paper we require the correlator of the random force to satisfy the fluctuation-disspation relation, which implies that thermodynamic equilibrium should be reached. In the paper we describe the numerical methods for integration of stochastic differential equation (including a new algorithm for reconnection processes), and we present the results of calculation of some characteristics of a vortex tangle such as the total length, distribution of loops in the space of their length, and the energy spectrum.Comment: 8 pages, 5 figure

    On the Absence of an Exponential Bound in Four Dimensional Simplicial Gravity

    Get PDF
    We have studied a model which has been proposed as a regularisation for four dimensional quantum gravity. The partition function is constructed by performing a weighted sum over all triangulations of the four sphere. Using numerical simulation we find that the number of such triangulations containing VV simplices grows faster than exponentially with VV. This property ensures that the model has no thermodynamic limit.Comment: 8 pages, 2 figure

    Phase Structure of Dynamical Triangulation Models in Three Dimensions

    Get PDF
    The dynamical triangulation model of three-dimensional quantum gravity is shown to have a line of transitions in an expanded phase diagram which includes a coupling mu to the order of the vertices. Monte Carlo renormalization group and finite size scaling techniques are used to locate and characterize this line. Our results indicate that for mu < mu1 ~ -1.0 the model is always in a crumpled phase independent of the value of the curvature coupling. For mu < 0 the results are in agreement with an approximate mean field treatment. We find evidence that this line corresponds to first order transitions extending to positive mu. However, the behavior appears to change for mu > mu2 ~ 2-4. The simplest scenario that is consistent with the data is the existence of a critical end point

    An Effective Model for Crumpling in Two Dimensions?

    Full text link
    We investigate the crumpling transition for a dynamically triangulated random surface embedded in two dimensions using an effective model in which the disordering effect of the XX variables on the correlations of the normals is replaced by a long-range ``antiferromagnetic'' term. We compare the results from a Monte Carlo simulation with those obtained for the standard action which retains the XX's and discuss the nature of the phase transition.Comment: 5 page

    Gauge Invariance in Simplicial Gravity

    Get PDF
    The issue of local gauge invariance in the simplicial lattice formulation of gravity is examined. We exhibit explicitly, both in the weak field expansion about flat space, and subsequently for arbitrarily triangulated background manifolds, the exact local gauge invariance of the gravitational action, which includes in general both cosmological constant and curvature squared terms. We show that the local invariance of the discrete action and the ensuing zero modes correspond precisely to the diffeomorphism invariance in the continuum, by carefully relating the fundamental variables in the discrete theory (the edge lengths) to the induced metric components in the continuum. We discuss mostly the two dimensional case, but argue that our results have general validity. The previous analysis is then extended to the coupling with a scalar field, and the invariance properties of the scalar field action under lattice diffeomorphisms are exhibited. The construction of the lattice conformal gauge is then described, as well as the separation of lattice metric perturbations into orthogonal conformal and diffeomorphism part. The local gauge invariance properties of the lattice action show that no Fadeev-Popov determinant is required in the gravitational measure, unless lattice perturbation theory is performed with a gauge-fixed action, such as the one arising in the lattice analog of the conformal or harmonic gauges.Comment: LaTeX, 68 pages, 24 figure

    Ising-link Quantum Gravity

    Get PDF
    We define a simplified version of Regge quantum gravity where the link lengths can take on only two possible values, both always compatible with the triangle inequalities. This is therefore equivalent to a model of Ising spins living on the links of a regular lattice with somewhat complicated, yet local interactions. The measure corresponds to the natural sum over all 2^links configurations, and numerical simulations can be efficiently implemented by means of look-up tables. In three dimensions we find a peak in the ``curvature susceptibility'' which grows with increasing system size. However, the value of the corresponding critical exponent as well as the behavior of the curvature at the transition differ from that found by Hamber and Williams for the Regge theory with continuously varying link lengths.Comment: 11 page
    corecore