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PHYSICAL REVIE%' D VOLUME 50, NUMBER 12 15 DECEMBER 1994

Ising-link Regge gravity

Tom Fleming' and Mark Grosst
Department of Physics and Astronomy, California State University, Long Beach, California 908/0

Ray Renken
Department of Physics, University of Central Florida, Orlando, Florida $8816

(Received 4 January 1994)

We define a simplified version of Regge quantum gravity where the link lengths can take on
only two possible values, both always compatible with the triangle inequalities. This is therefore
equivalent to a model of Ising spins living on the links of a regular lattice with somewhat complicated,
yet local interactions. The measure corresponds to the natural sum over all 2 ' configurations,
and numerical simulations can be efBciently implemented by means of look-up tables. In three
dimensions we find a peak in the "curvature susceptibility" which grows with increasing system size.
The value of the corresponding critical exponent appears to vary with the cosmological constant A,

agreeing with Regge gravity for at least one value of A. However, the curvature does not go to zero
at the transition.
PACS uumber(s): 04.60.Nc, 11.15.Ha

I. INTRODUCTION

To date, two main formulations of lattice quantum
gravity have been studied: the so-called "Regge gravity"
[1, 2] and "dynnm~cal triangulation" approaches [3—5].
The distinguishing feature is that the former has a fixed
incidence matrix and varying link lengths while the latter
has a varying incidence matrix and fixed link lengths.

Both formulations are technically and computationally
demanding. For example, the Regge approach involves
calculating areas and deficit angles involving general d
simplexes. In the dynamical triangulation approach these
take on only a limited n»aber of possible values, but the
updating moves involve complicated interchanges of sev-
eral simplexes at once. We introduce here a third lattice
gravity approach which is structurally and computation-
ally much simpler than either Regge gravity or dynamical
triangulation, and as a result is amenable to analytic at-
tack in more than two dimensions.

We call our formulation "Ising-link Regge gravity. " It
is easy to define. The incidence matrix is fixed exactly as
in the conventional Regge approach. But the link lengths
can only take on two values:

l; =1+bs;,
with s; = +1 and b a positive constant. i is a link la-
bel. In order that the triangle inequality (or its higher
dimensional generalization, that the simplex vobime is
real and positive) is always satisfied, it is straightforward

Electronic address: Se~i~gophysicsl. natsci. csulb. edu
tElectronic address: mgrosscsulb. edu
~ Electronic address: rlrophys. physics. ucf.edu
l; = c(1+bs;) is uo more general, as c can be absorbed into

the definitions of A and h in (2).

to show that we must take b ( s in two dimensions,

h ( 3 —~8 0.17 in three dimensions, etc. (See Sec.
II.) We restrict 1 to satisfy this inequality so that all 2+'
configurations are allowed. (Ni is the number of links. )
This is quite different Rom either Regge gravity or dy-
namical triangulation, where most potential updates ei-
ther violate the triangle inequalities or violate the mani-
fold property. Bmthermore, it provides us with a natural
measure which gives all 2N' configurations equal weight.
It is clear that our model is completely equivalent to a
(regular lattice) Ising model with spins (s;) living on the
links. We will see that the spin interactions are local,
albeit somewhat complicated.

The Ising-link model is analytically and computation-
ally much simpler than either the Regge gravity or the
dynamical triangulation approach. But is it too simple?
In Sec. III we present mean field theory results on the
model in three dimensions and in Sec. IV we give cor-
responding Monte Carlo results. We compare to results
obtained by Hamber and Williams for the Regge theory
in three dimensions (SD).

II. ISINC MODEL FORMULATION

In this section we discuss how to compute the Ising
action corresponding to the discrete form of

S = AV —— d x~gR,
k

2
(2)

where V is the d-dimensional volume, f d z~g, and & is
the scalar curvature. The lattice is formed out of hyper-
cubes plus face, cubic (d ) 3) and hypercubic diagonals
(d ) 4), with periodic boundary conditions [2]. First we
will treat two dimensions, then three. Four dimensions
are just like three, only balder.

Ttvo dimensions. Consider a triangle with link lengths
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7364 TOM FLEMING, MARK GROSS, AND RAY RENKEN 50

Lq, L3, and L3 .Define L; = 1+bs, as in (1). Since 8, =
1 and the formula for the area of the triangle must be
symmetric in the three spins, the most general form for
the area is

A123 —CO + Cl (Sq + 83 + 83)

+C3(sys3 + 83s3 + 83sy) + Cssys3$3 (3)

There are only four possible values for the area of the
triangle, corresponding to 0, 1, 2, or all 3 of its spins being
equal to +1. Computing these four areas and comparing
to (3) gives four linear equations for the C in terms of
the parameter b The. ir solution is

32Cp ——2&3(1+b') + 3f (b) + 3g(b),
32Cg ——4b~3+ f (b) —g(b),
32C3 ——2~3(1+ b ) —f (b) —g(b),
32C3 ——4bv 3 —3f(b) + 3g(b),

(4)

2' ) 8i + C3 ) Sisj + C3 ) sisjss
i (ij) (ijk) )

where i, j, and k are link labels. (ij) indicates i and j
are two of three li»&s forming a triangle. In this case,
8, and sj may be termed nearest-neighbor li»&s. (ijk)

I

where f(b)—:~1
—b~g(1+ 3b)(3+ b) and g(b)

—= (1+
b)g(1 —3b)(3 —b) For e. xample, b = 0.1 gives C&

0.0291, C~ 0.0039 and C3 —0.0008. As stated in the
Introduction, it is seen that we must have b ( 1j3 for
the triangle areas to be real and positive.

Since the Einstein term in (2) is a topological invariant,
it is not relevant to the case of fixed topology being con-
sidered here. Thus, s»mming over all triangles and drop-
ping the irrelevant constant term, the two-dimensional
action is

FIG. 1. A labeled tetrahedron.

means that i, j, and k are three li»ks which form a trian-
gle. The Cz term is a "nearest-neighbor" ferromagnetic
interaction. The Cq term is a magnetic Beld term and
the C3 term is an additional symmetry-breaking term.

One might hope that the continu»m limit of Ising-
link quant»m gravity would correspond to a second-order
magnetization phase transition. But with the explicit
symmetry-breaking terms in (5), it is clear that this
transition cannot be from order ((8) g 0) to disorder

((8) = 0). It would have to be an (8) g 0 to (8) g 0
transition. In two dimensions, as expected, we found no
evidence of such a transition, at least in the mean field

theory approximation.
The analytic results of Knizh»ik et oL. [6] and others [7]

are at fixed area. These results are tec&»ically &i%cult to
check in the case of the Ising-link model because changing
any link length to its other value always changes the total
area.

Thee dimensions. We will now go on to discuss the
form of the theory in three dimensions. In the next sec-
tion we will compare numerical results in 3D to results
for the unconstrained Regge theory.

Consider the labeled tetrahedron of Fig. 1. The volume

Vt,g is given by [2]

144' q
= 4/~LSL4 L~(L3 Ls + L4) L3(L~ + L4 Ls) L4(L~ L3+ Ls) + (L3 Ls + L4)(L~ + L4 Ls)(L~ L3+ L3)

where the L; may be written in terms of spins 8; using Eq. (1). There are only ll distinct possible values for the
vob~me of the tetrahedron, corresponding to the 11 c priori unknown constants in the most general equation for V~,&

compatible with the symmetries of the labeled tetrahedron:

Valet = Cp + Cy ) si + C3 ) sisj + C3 ) sisj + C4 ) Sisjsz + Cs ) sisjss + Cs ) Sisjs&
'i (ij) [ij] (ijk) (ijk) [ijk]

r
Cp + C~ ) s; + C3 ) 8;Sj + C3 ) s;s,

i (gg) [sgj )

Here (ij) are again two of three links that form a triangle
in Fig. l. [ij] are the remaining pairs of links. (ijk) form
a triangle, (ijk) share a common site, and [ijk] are the
remaining triplets of links. Because si = 1, the last four
terms involve 4-, 5- and 6-link interactions. Evaluating
(7) for each of the 11 distinct volumes results in 11 linear

equations for the Ci and C,'-. A.s in (4) for the 2D case,
these can easily be solved to determine the Ci and C,' as
functions of b. The result is not particularly ilb~~inating
and we will not reproduce it here. It is worth noting,
however, that the vob~mes are always real and positive
if we choose b ( 3 —~8 = 0.17. In the mean field and
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n»merical results described in the next two sections, b is
held equal to 0.1.

We see that after s»mming up the vol»mes of all the
tetrahedrons, the vol»me term in (2) will consist of only
local interactions of the spins, involving up to 6-spin in-
teractions.

The second (Einstein) term in (2), —
2 f d32:~gR,

takes the form [2]

This is a functional of the spins since 1; = 1+bs;, by Eq.
(1). We wish to mi»imize the free energy,

Il = (H) —8/P, (i2)

for the spin probability distribution function P[8], where

8 is the entropy.
The mean field approximation [8] consists of replac-

ing the true probability distribution for the spins by a
factorized form:

P[ ] w p(8, )p(82)p( 3) . p(8~, ), (13)

1
cos(8g(5) = [2(l4 + ls —ls)l5

16Ay45A233g
—(l4 + l5

—l1) (l5 + le —l2)], (9)

where t/i denotes a tetrahedron containing the link i and
Hly; is the corresponding dihedral angle at »»k i Fo.r the
tetrahedron shown in Fig. 1, 8&y5 is given by

where Nl is the n»mber of li»ks. If all li»&s were equiva-
lent, we could write p(s;) = +2 " W p, . p(8;) = »nd
(8;) = m. But there are three diferent kinds of li»&s

in the lattice formed out of cubes with body and face
diagonals: the body diagonals, the cube edges, and the
face diagonals. Lin&s of the same type have the same
geometrical enviro»ment; li»&s of different types do not.
As a result we must use the more general distribution

where A;~s is the triangle formed by 'Li»&s i, j, and k.
The term S@ can also be written in terms of local spin
interactions, but we shall omit the detai&s here.

( )
1+m~si

(14)

III. MEAN FIELD THEORY
IN THREE DIMENSIONS

Z = ) exp( —PH[8]), (10)

where P:—1 and

The Ising-link model is quite accessible to mean field
theory (MFT) tec»»piques. We write

where j = 1,2, and 3 for body diagonals, cube edges, and
face diagonals, respectively.

A straightforward calculation allows us to determi»e
(H) and 8 as functions of ml, m2, and ms. Let

Pv =p2(sl)p3(82)p2(s3)p3(s4)pl(85)p2(ss)

PR1 = pl(sl)p3(s2)p2(83)p3(84)p2(85)p2(ss)

P~2 = p3(S1)p2(S2)pl(83)p2(S4)p2(85)p3(86) ) (15)

Pa3 =p2(81)pl(82)p3(S3)p2(S4)p3(85)p2(85)
H —= S = AV —— d x~gR.2

(ii)
We Snd that

8):") P (8)V~.t(8)
d1 86

d z+gR = 27cNp[7+ b(ml + Bm2+ Bms)]2

—6NO ) ) lz(8)8&(5(s) [Pv (8) + 2Pzl(8) + Pzz(8) + 2Pz3(s)] (i7)

and

8—:—(ln P[8]) = —No[h(ml) + Bh(m2) + Bh(ms)],

(»)

I

and

2 (J'd32:~gR)

(V)

where Vt,t and 8~~5 are given by (6) and (9), re-
spectively, Ng is the n»aber of lat tice sites, and
h(x) =— +2 ln( +2 ) + 2 ln( 2 ). 8 is shorthand for
sz, s2, . . . , s6. Now it is a simple matter to n~~erically
minimize the free energy (12) as a function of ml, m2,
and m3. Then (8) is given by

= (1+b + 2b(s))
{V)

(20)

Here we follow the notation of Hamber and Williams [9].
Also the "curvature susceptibility" is de6ned as

my+ 3m'+ 3m3
S

7 (19) (21)



7366 TOM FLEMING, MARK GROSS, AND RAY RENKEN

/k, —k/~ '
(22)

for k ( k„with h = 0.80 6 0.06, a very weak second-
order phase transition. To investigate whether this kind
of nonanalyticity is seen in the MFT approximation to
the Ising-hnk model, we varied bk &om 1 downward
(Ak is the increment used to take the numerical deriva-
tive of (f dsx~g R).) The behavior (22) would result in
the peak of y~ growing with b,k like (Ak)~ . b = 0.80
would imply that the peak would grow by 58% in height
for each factor of 10 decrease in Lk. However, for all
values of A considered (up through A = 75), there was
no increase in the peak height as Ak was decreased &om
1 down to 0.01. As a result we have no evidence of (22)

Results. Figure 2 shows typical MFT results for the
case A = 1. There is sharp crossover behavior seen in
(s), o, and R at k slightly negative. R and (f d z~gR)
(not shown in Fig. 2) are related by (20) and exhibit sim-
ilar behavior in this region. yR was evaluated using (21),
by taking a numerical derivative of (f dsx~gR) with in-
crement Ak = 1. We see a peak in y~ here, as expected
&om the rapid crossover behavior in R. Hamber and
Williams [9] found a second-order phase transition in the
3D Regge theory exhibiting

with 0 —1 ( 0 in the mean geld approximation to the 3D
Ising-link model. Nevertheless, in the next sectioa we
will present Monte Carlo evidence for (22) with b —1 ( 0
for A greater than about 15.

For A g 1 the situation looks similar to that shown in
Fig. 2. There is a finite peak in y~ at k slightly negative
and a first-order phase transition at large positive k. The
height of the peak in y~ and the size of the discontiauity
at the first-order phase transition vary appreciably with
A. Figure 3 shows a dashed curve in A-k space where
there is a peak in y~ and a solid curve of Grst-order phase
transitions. For k to the right of the first-order phase
transition, R rapidly approaches zero &om below as the
system approaches a state with mq ——m3 — mQ —l.
As k ~ —oo, the system approaches a state with mq ——

fA2 fA3 1 0

IV. NUMERICAL RESULTS
IN THREE DIMENSIONS

The 3D Ising-link model was also analyzed by the
Monte Carlo method. The discrete form of (2) was

used, with toroidal topology and without higher deriva-
tive terms, as discussed in the previous section. As in

0.75-

0.5—

0.25—

-0.25—

-0.5—

-0.75—

I
I
I
I
I
I
I

I
l
I
I

e a m a a a m

calcu ated in MFT. e is the average volume per site,FIG. 2. A plot of the indicated quantities versus k for A = 1 as calculated in

(V)/Np.
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that section, b was chosen to be 0.1 throughout. [See Eq.
(1)

ISince there are only two possible lengths per link, there
are at most 2 = 64 possible configurations for a partic-
ular tetrahedron. (Actually there are significantly fewer
due to symmetry. ) Because all terms in the action are
determined solely by the link lengths in the lattice, the
limited n»aber of distinct tetrahedrons allows many of
the calculations to be performed only once at program
entry and stored for later use in the form of "look-up ta-
bles. " These tables are accessed during the Monte Carlo
updating. As a result, the Ising-link model proved to be
quite computationally efBcient; run times were reduced
by as much as a factor of 10 over continuous-link (Regge
gravity) simulations.

Except for the reliance on look-up tables, the simula-
tions were carried out in the usual way. An initial ran-
dom configuration of link lengths is chosen, generating
a particular initial geometry. A link update consists of
choosing a particular link in the lattice, calculating the
change in the action if the link takes on its other possible
value, and accepting the nem link value with probability
proportional to the exponential of the negative change

in the action (heat bath). Link updates are performed
for each &i~k in the lattice; this constitutes one sweep.
The quantities of interest are calculated after each sweep
of the lattice, and the values for each new geometry are
binned for statistical analysis. R»~~ of up to 128k sweeps
on the 4 and 8 lattices, and up to 500k sweeps on the
163 lattice were performed for various values of A and k.

The two physical quantities of greatest interest are R
and y~, defined in Eqs. (20) and (21). Hamber and
Williams found that in the Regge theory, the curvature
susceptibility diverges at points where R vanishes [9].
Thus, a portion of the curve R = 0 was first identified
(Fig. 4), and the behavior of the model was studied along
that curve. But pea&~ in g~ (defined in [9]) and not in

g~ appeared along the R = 0 curve. The peaks in g~
turned out to be located at values of k that correspond to
local infiection points in R. This behavior is consistent
with Eq. (21), which relates y~ to the first derivative of
R with respect to k. Also plotted in Fig. 4 is a dashed
curve of peaks in y~. The cases A = 1 and A = 10 mere
studied for values of k close to that curve, but no growth
of the peak with increasing system size was observed, in-
dicating the absence of a second-order transition in this

30-

20-

10-

0-

-10—

'70—

-30—

I
I

I

I

I
I
I
I
I
I

I

I
I

I
I

I

I

I

I
I
I

I
I
t
I

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
t
I
I
I

S

I
I

I
I

I

I
I

I

FIG. 3. The "phase diagram" of the 3D Ising-link model in the MFT approximation. The dashed curve shows the location
of the peak in yR and the solid curve is a firs-order phase transition.
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region of parameter space. For A = 20 and above, how-
ever, we did find growth in the g~ peak with increasing
system size indicative of a second-order phase transition
(see below). Thus the dashed curve appears to become
a curve of second-order phase transitions somewhere be-
tween A = 10 and A = 20.

Figure 4 may be compared with Fig. 3 determined by
MFT. The location of the peak in y~ is the same in both
plots to within Monte Carlo statistical errors. However,
no second-order phase transition occurred in the MFT
approximation for any value of A. The agreement at
large k between MFT and Monte Carlo is not very good.
As discussed in the preceding section, MFT exhibited a
first-order phase transition along the solid curve of Fig.
3, and for k to the right of that curve, R asymptotically
approached 0 from below. This first-order phase tran-
sition was not found in Monte Carlo, and R went &om
negative to positive values at the location of the solid
curve in Fig. 4.

The comparison with MFT is also seen by comparing
Monte Carlo A = 1 data displayed in Fig. 5 with corre-
sponding MFT data shown in Fig. 2. Note the difFerence

R = Ro+ Aikc —ki

and

xR =&(k. —kI' ' (24)

for k k„where k, is the critical point for fixed A and

in the scales for (s) and g~. For k negative the agree-
ment is quite good; in fact the Monte Carlo results agree
completely with MFT at k ~ —oo; both indicate that
the system &eezes into a state with the body diagonals
and cube edges long (s = 1) and the face diagonals short
(s = —1). The main negative k disagreement occurs at
the peak in g~ which is much lower in the MFT approx-
imation than even on a 4 lattice. For k positive the
agreement is much poorer. For large A: in MFT, R never
goes positive, a spurious julep in yn is predicted (k = 48)
and (s) is off by about a factor of 3.

%e now return to the evidence for a second-order phase
transition at large A. The desired signature for critical
behavior would be

30-

I

I

I

I

I

20-

10-

0-

-20—

-30—
I
I
I
I
I
l

V'

FIG. 4. The "phase diagram" of the 3D Ising-link model as determined by Monte Carlo simulations. The dashed curve

shows the location of the peak in yR which is found to scale with system size at large A. The solid curve is R = 0. Lattice
sizes up to 16 were used, and error bars are of order the size of the data points.



736950 ISING-LINK REGGE GRAVITY

ln(g~) c + —ln L, (25)

em len h and a/v = d(1 —6)/(1+6),where L is the system lengt an a

d fr the curvature susceptibility a awas determ~nea om e

tic of the transition6 is the crt xct al exponent characteris ic
f91.

full Re e theory in three dimen-P vious work on the gg
er~i~ed that ~ = 0 an

do

h behavior expectedtho h, does s ow e
N

'
ali h- rder haec tra~~ition. ear cri

h t t'b'Htd narrowing in the curva ur
e h 'th increasing systeme in eak heignt wi in

Fseen in ig. . o
and Williams [9], the &nite-size sc ~ug re
peak of the curvature susceptibility i

of A as shown in the foQowing table:for various values o as s

0
10
20
30
40
50
60
75

b

1.00(1)
1.00(1)
0.92(2)
0.82(2)
0.82(1)
0.78(4)
0.84(4)
0.55(2)

rs am ustly statisticaL Only L =4, 8
d 75 which includeddata was used excepce tforA=40an, w 'c

alin: 6 determined= 75 showed evidence of sc ng:
corn atible with 6 determined from

L —4 d8 gave

systematic errors in the above ta e pro
given statistical errors. ~

0.75-

2&s)

0.5-

0.25- Z/5

rirI
\ /

H r % % % ~

-0.25-

-0.5—

-0.75—

H rH~ Q Q Q Q % Q

I
I
I

I

r

r Ak = 1, and error bars are 0.0.013 or smaller.or 4=1 ona4 a ace.a tt e. Data frere taken everyFIG. 5. Monte Carlo data for

edI = 16. 500k svreeps were n eserved at A = 40, L = 1 .
mined

' l severe critic s o
corn

' hi th statistically detercorn atible erat n eith the same coupling values gave res sbefore dHFerent runs vrx

error bars.
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Nevertheless we have a preliminary indication that the
critical exponent varies with coupling A. Variable ex-
ponents are known to exist in the Ash»n-Teller model,
the eight-vertex model, and the Ising model with next-
nearest-neighbor antiferromagnetic interactions [10].

The possibility that 6 varies with cosmological constant
may indicate that the Ising-link model is sick or that it
may exhibit a fbi&y of continu»m limits. Rather studies
where L is allowed to vary over a larger range for each
value of A are needed to convincingly demonstrate scaling
and critical behavior varying with cosmological constant.

Ass»ming that 6 does not vary with A in the standard
Regge theory, we note that the curvature susceptibilities
of the two models appear to agree for A 40.

V. DISCUSSION AND SUGGESTIONS
FOR FURTHER WORK

In three dimensions we have uncovered critical behav-
ior in the Ising-Hnk model for A greater than about 15.
The critical behavior takes the form (23) and (24) as
found by Hamber and Williams for the full Regge theory
in 3D. But Ro was 0 in their model and not in ours. Their

model was sick for k ) k; ours was not. Surprisingly, the
Ising-link curvature susceptibility exponent appeared to
vary with cosmological constant, agreeing with the (pre-
sumably Bxed) Regge value only for A 40.

We should mention a quite diferent interpretation of
our results suggested by a referee of this paper. In [9],
the possibility of an additional yR phase transition at
negative k in the 3D Regge theory was discussed, al-
though little supporting evidence was presented. This
second transition would have R nonzero and could cor-
respond to the negative k Ising-link transition studied in
this paper. In that case it would be natural to identify
the positive k, R = 0 transition in the Ising-link model
with the positive k, R = 0 transition of the Regge the-
ory. Unfortunately, the positive k Ising-link transition
exhibits no peak in yR so the correspondence between
the two models in this scenario would not be complete.

Many questions remain: What connections can be
made with the Ponzano-Regge theory [11] (which also
allows only two link lengths) and its variants'? Does the
critical behavior really vary with cosmological constant?
If so does this imply a family of continu»m limits associ-
ated with the Ising-link model? Is there any dependence

OO

000

0
0

30- O~ 0

Og

20-

10-

a
0

a
C3

oo

pI{ . 6. The peag in g~ at A = 75 for lattices of lengths 4, 8, and 16. The largest statistical errors of the data points are

respectively, 0.3, 1.3, and 3.3.
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on the parameter h of Eq. (1}? Can sense be made of a
nonzero Rc at the (h ( 0} critical point [12,13]? What
happens if one allows the link lengths to vary among
3,4, . . . , oo values?

The Ising-link model can and should be investigated in
four ¹~mensions as well. The mean Geld approximation
is somewhat more c¹%cult but still quite feasible, and it
would be expected to be more accurate in four dimen-
sions than in three. s Other analytic methods should also
be considered. Four-dimensional Monte Carlo computa-

tions can still be performed using look-up tables and as a
result should be many times faster than for the full Regge
theory.

Note added. While writing up this work we received
two related papers by W. Beirl, H. Mark»m, and J.
Riedler [14]. They independently defined the Ising-link
model and investigated its behavior in two dimensions.
J. Riedler [15] has recently presented the first results for
the Ising-link model in the physically relevant case of four
dimensions.
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