92 research outputs found

    Ocean warming affected faunal dynamics of benthic invertebrate assemblages across the Toarcian Oceanic Anoxic Event in the Iberian Basin (Spain)

    Get PDF
    This is the final version. Available on open access from Public Library of Science via the DOI in this recordData Availability: The datasets generated and analysed during the current study, as well as the R scripts, are available from the Dryad Digital Repository (accession number: doi:10.5061/dryad.66t1g1k0w).The Toarcian Oceanic Anoxic Event (TOAE; Early Jurassic, ca. 182 Ma ago) represents one of the major environmental disturbances of the Mesozoic and is associated with global warming, widespread anoxia, and a severe perturbation of the global carbon cycle. Warming-related dysoxia-anoxia has long been considered the main cause of elevated marine extinction rates, although extinctions have been recorded also in environments without evidence for deoxygenation. We addressed the role of warming and disturbance of the carbon cycle in an oxygenated habitat in the Iberian Basin, Spain, by correlating high resolution quantitative faunal occurrences of early Toarcian benthic marine invertebrates with geochemical proxy data (δ18O and δ13C). We find that temperature, as derived from the δ18O record of shells, is significantly correlated with taxonomic and functional diversity and ecological composition, whereas we find no evidence to link carbon cycle variations to the faunal patterns. The local faunal assemblages before and after the TOAE are taxonomically and ecologically distinct. Most ecological change occurred at the onset of the TOAE, synchronous with an increase in water temperatures, and involved declines in multiple diversity metrics, abundance, and biomass. The TOAE interval experienced a complete turnover of brachiopods and a predominance of opportunistic species, which underscores the generality of this pattern recorded elsewhere in the western Tethys Ocean. Ecological instability during the TOAE is indicated by distinct fluctuations in diversity and in the relative abundance of individual modes of life. Local recovery to ecologically stable and diverse post-TOAE faunal assemblages occurred rapidly at the end of the TOAE, synchronous with decreasing water temperatures. Because oxygen-depleted conditions prevailed in many other regions during the TOAE, this study demonstrates that multiple mechanisms can be operating simultaneously with different relative contributions in different parts of the ocean

    Three-dimensional Magnetic Resonance Imaging of fossils across taxa

    Get PDF
    The frequency of life forms in the fossil record is largely determined by the extent to which they were mineralised at the time of their death. In addition to mineral structures, many fossils nonetheless contain detectable amounts of residual water or organic molecules, the analysis of which has become an integral part of current palaeontological research. The methods available for this sort of investigations, though, typically require dissolution or ionisation of the fossil sample or parts thereof, which is an issue with rare taxa and outstanding materials like pathological or type specimens. In such cases, non-destructive techniques could provide a valuable methodological alternative. While Computed Tomography has long been used to study palaeontological specimens, a number of complementary approaches have recently gained ground. These include Magnetic Resonance Imaging (MRI) which had previously been employed to obtain three-dimensional images of pathological belemnites non-invasively on the basis of intrinsic contrast. The present study was undertaken to investigate whether <sup>1</sup>H MRI can likewise provide anatomical information about non-pathological belemnites and specimens of other fossil taxa. To this end, three-dimensional MR image series were acquired from intact non-pathological invertebrate, vertebrate and plant fossils. At routine voxel resolutions in the range of several dozens to some hundreds of micrometers, these images reveal a host of anatomical details and thus highlight the potential of MR techniques to effectively complement existing methodological approaches for palaeontological investigations in a wide range of taxa. As for the origin of the MR signal, relaxation and diffusion measurements as well as <sup>1</sup>H and <sup>13</sup>C MR spectra acquired from a belemnite suggest intracrystalline water or hydroxyl groups, rather than organic residues

    Temperature-related body size change of marine benthic macroinvertebrates across the Early Toarcian Anoxic Event

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this record. The Toarcian Oceanic Anoxic Event (TOAE, Early Jurassic, ~182 Ma ago) was characterised by severe environmental perturbations which led to habitat degradation and extinction of marine species. Warming-induced anoxia is usually identified as main driver, but because marine life was also affected in oxygenated environments the role of raised temperature and its effects on marine life need to be addressed. Body size is a fundamental characteristic of organisms and is expected to decrease as a response to heat stress. We present quantitative size data of bivalves and brachiopods across the TOAE from oxygenated habitats in the Iberian Basin, integrated with geochemical proxy data (δ13C and δ18O), to investigate the relationship between changes in temperature and body size. We find a strong negative correlation between the mean shell size of bivalve communities and isotope-derived temperature estimates, suggesting heat stress as a main cause of body size reduction. While within-species size changes were minor, we identify changes in the abundance of differently sized species as the dominant mechanism of reduced community shell size during the TOAE. Brachiopods experienced a wholesale turnover across the early warming phase and were replaced by a virtually monotypic assemblage of a smaller-sized, opportunistic species.Natural Environment Research Council (NERC

    Warm afterglow from the Toarcian Oceanic Anoxic Event drives the success of deep-adapted brachiopods

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Many aspects of the supposed hyperthermal Toarcian Oceanic Anoxic Event (T-OAE, Early Jurassic, c. 182Ma) are well understood but a lack of robust palaeotemperature data severely limits reconstruction of the processes that drove the T-OAE and associated environmental and biotic changes. New oxygen isotope data from calcite shells of the benthic fauna suggest that bottom water temperatures in the western Tethys were elevated by c. 3.5°C through the entire T-OAE. Modelling supports the idea that widespread marine anoxia was induced by a greenhouse-driven weathering pulse, and is compatible with the OAE duration being extended by limitation of the global silicate weathering fux. In the western Tethys Ocean, the later part of the T-OAE is characterized by abundant occurrences of the brachiopod Soaresirhynchia, which exhibits characteristics of slow-growing, deep sea brachiopods. The unlikely success of Soaresirhynchia in a hyperthermal event is attributed here to low metabolic rate, which put it at an advantage over other species from shallow epicontinental environments with higher metabolic demand.Natural Environment Research Council (NERC

    The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic)

    Get PDF
    The Pliensbachian-Toarcian (Early Jurassic) fossil record is an archive of natural data of benthic community response to global warming and marine long-term hypoxia and anoxia. In the early Toarcian mean temperatures increased by the same order of magnitude as that predicted for the near future; laminated, organic-rich, black shales were deposited in many shallow water epicontinental basins; and a biotic crisis occurred in the marine realm, with the extinction of approximately 5% of families and 26% of genera. High-resolution quantitative abundance data of benthic invertebrates were collected from the Cleveland Basin (North Yorkshire, UK), and analysed with multivariate statistical methods to detect how the fauna responded to environmental changes during the early Toarcian. Twelve biofacies were identified. Their changes through time closely resemble the pattern of faunal degradation and recovery observed in modern habitats affected by anoxia. All four successional stages of community structure recorded in modern studies are recognised in the fossil data (i.e. Stage III: climax; II: transitional; I: pioneer; 0: highly disturbed). Two main faunal turnover events occurred: (i) at the onset of anoxia, with the extinction of most benthic species and the survival of a few adapted to thrive in low-oxygen conditions (Stages I to 0) and (ii) in the recovery, when newly evolved species colonized the re-oxygenated soft sediments and the path of recovery did not retrace of pattern of ecological degradation (Stages I to II). The ordination of samples coupled with sedimentological and palaeotemperature proxy data indicate that the onset of anoxia and the extinction horizon coincide with both a rise in temperature and sea level. Our study of how faunal associations co-vary with long and short term sea level and temperature changes has implications for predicting the long-term effects of “dead zones” in modern oceans

    Macrofossil evidence for a rapid and severe Cretaceous–Paleogene mass extinction in Antarctica

    Get PDF
    Debate continues about the nature of the Cretaceous–Paleogene (K–Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K–Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous–Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian

    A New Chanidae (Ostariophysii: Gonorynchiformes) from the Cretaceous of Brazil with Affinities to Laurasian Gonorynchiforms from Spain

    Get PDF
    Based on specimens originally referred to as “Dastilbe minor”, a nomem-nudum, we describe a new genus of Chanidae †Nanaichthys longipinnus nov. gen. and sp. which exhibits several diagnostic characters such as the absence of orbitosphenoid and basisphenoid, anteriorly displaced quadrate-mandibular articulation, laterally expanded supraneurals, an acute angle between the preopercular limbs, expansion at the angle between the preopercular limbs, and a curved maxillary articular process. Its occurrence and supposed relationship within the Chanidae reinforce the influence of the Mediterranean Tethys over the Gondwanan main rift system prior to the Aptian/Albian highstands
    • …
    corecore