1,459 research outputs found

    Vasculitis distribution and clinical characteristics in giant cell arteritis: a retrospective study using the new 2022 ACR/EULAR classification criteria

    Get PDF
    IntroductionGiant cell arteritis (GCA) is the most common vasculitis of the elderly. In recent years, advanced imaging has to a certain extent replaced temporal artery biopsy (TAB) to aid diagnosis in many institutions and helped to identify three major phenotypes of GCA, namely, cranial GCA (c-GCA), large-vessel non-cranial GCA (LV-GCA), and a combination of these two patterns called mixed-GCA, which all show different clinical patterns. Recent 2022 American College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) classification criteria respect the changing conception and clinical practice during the last two decades. In this cohort study, we present vasculitis distribution and baseline characteristics using the 2022 ACR/EULAR classification criteria as well as the EULAR core data set.MethodsIn this retrospective study from Southern Norway, we identified all patients diagnosed with GCA between 2006 and 2019 in our single-center fast-track clinic (FTC). We included all patients who were examined using ultrasound (US) of cranial as well as non-cranial large vessels at diagnosis to depict vascular distribution. EULAR core data set, ACR 1990, and 2022 ACR/EULAR classification criteria were used to characterize the cohort.ResultsSeventy-seven patients were diagnosed with GCA at our institution in the aforementioned period. Seventy-one patients (92.2%) were diagnosed with the help of US and included in the further analysis. The 2022 ACR/EULAR classification criteria allocated 69 patients (97.2%), while the ACR 1990 classification criteria allocated 49 patients (69.0%) in our cohort as having GCA. Mixed-GCA was the most common type in 33 patients (46.5%). Weight loss was significantly more common in patients with large-vessel non-cranial vasculitis in LV-GCA and mixed-GCA. Headache, on the other hand, was significantly more common in patients with involvement of cranial vessels.ConclusionMixed GCA was the most common form of GCA in our cohort. In our study, the 2022 ACR/EULAR classification criteria seem to be a more useful tool compared with the old ACR 1990 classification criteria to allocate GCA patients diagnosed and treated at our US-based FTC as having GCA

    Spatial heterogeneity and irreversible vegetation change in semi-arid grazing systems

    Get PDF
    Recent theoretical studies have shown that spatial redistribution of surface water may explain the occurrence of patterns of alternating vegetated and degraded patches in semiarid grasslands. These results implied, however, that spatial redistribution processes cannot explain the collapse of production on coarser scales observed in these systems. We present a spatially explicit vegetation model to investigate possible mechanisms explaining irreversible vegetation collapse on coarse spatial scales. The model results indicate that the dynamics of vegetation on coarse scales are determined by the interaction of two spatial feedback processes. Loss of plant cover in a certain area results in increased availability of water in remaining vegetated patches through run-on of surface water, promoting within-patch plant production. Hence, spatial redistribution of surface water creates negative feedback between reduced plant cover and increased plant growth in remaining vegetation. Reduced plant cover, however, results in focusing of herbivore grazing in the remaining vegetation. Hence, redistribution of herbivores creates positive feedback between reduced plant cover and increased losses due to grazing in remaining vegetated patches, leading to collapse of the entire vegetation. This may explain irreversible vegetation shifts in semiarid grasslands on coarse spatial scales

    Enhancement of urban pluvial flood risk management and resilience through collaborative modelling: a UK case study

    Get PDF
    This paper presents the main findings and lessons learned from the development and implementation of a new methodology for collaborative modelling, social learning and social acceptance of flood risk management technologies. The proposed methodology entails three main phases: (1) stakeholder analysis and engagement; (2) improvement of urban pluvial flood modelling and forecasting tools; and (3) development and implementation of web-based tools for collaborative modelling in flood risk management and knowledge sharing. The developed methodology and tools were tested in the Cranbrook catchment (London Borough of Redbridge, UK), an area that has experienced severe pluvial (surface) flooding in the past. The developed methodologies proved to be useful for promoting interaction between stakeholders, developing collaborative modelling and achieving social acceptance of new technologies for flood risk management. Some limitations for stakeholder engagement were identified and are discussed in the present paper

    The diverse nature of island isolation and its effect on land bridge insular faunas

    Get PDF
    Aim: Isolation is a key factor in island biology. It is usually defined as the distance to the geographically nearest mainland, but many other definitions exist. We explored how testing different isolation indices affects the inference of impacts of isolation on faunal characteristics. We focused on land bridge islands and compared the relationships of many spatial and temporal (i.e., through time) isolation indices with community‐, population‐ and individual‐level characteristics (species richness, population density and body size, respectively). Location: Aegean Sea islands, Greece. Time period: Current. Taxon: Many animal taxa. Methods: We estimated 21 isolation indices for 205 islands and recorded species richness data for 15 taxa (invertebrates and vertebrates). We obtained body size data for seven lizard species and population density data for three. We explored how well indices predict each characteristic, in each taxon, by conducting a series of ordinary least squares regressions (controlling for island area when needed) and a meta‐analysis. Results: Isolation was significantly (and negatively) associated with species richness in 10 of 15 taxa. It was significantly (and positively) associated with body size in only one of seven species and was not associated with population density. The effect of isolation on species richness was much weaker than that of island area, regardless of the index tested. Spatial indices generally out‐performed temporal indices, and indices directly related to the mainland out‐performed those related mainly to neighbouring islands. No index was universally superior to others, including the distance to the geographically nearest mainland. Main conclusions: The choice of index can alter our perception of the impacts of isolation on biological patterns. The nearly automatic, ubiquitous use of distance to the geographically nearest mainland misrepresents the complexity of the effects of isolation. We recommend the simultaneous testing of several indices that represent different aspects of isolation, in order to produce more constructive and thorough investigations and avoid imprecise inference

    When a fly ball is out of reach: catchability judgments are not based on optical acceleration cancelation.

    Get PDF
    The optical acceleration cancelation (OAC) strategy, based on Chapman’s (1968) analysis of the outfielder problem, has been the dominant account for the control of running to intercept fly balls approaching head on. According to the OAC strategy, outfielders will arrive at the interception location just in time to catch the ball when they keep optical acceleration zero. However, the affordance aspect of this task, that is, whether or not an approaching fly ball is catchable, is not part of this account. The present contribution examines whether the scope of the OAC strategy can be extended to also include the affordance aspect of running to catch a fly ball. This is done by considering a fielder’s action boundaries (i.e., maximum running velocity and – acceleration) in the context of the OAC strategy. From this, only when running velocity is maximal and optical acceleration is non-zero, a fielder would use OAC to perceive a fly ball as uncatchable. The present contribution puts this hypothesis to the test. Participants were required to try to intercept fly balls projected along their sagittal plane. Some fly balls were catchable whereas others were not. Participants were required to catch as many fly balls as possible and to call ‘no’ when they perceived a fly ball to be uncatchable. Participants’ running velocity and –acceleration at the moment of calling ‘no’ were examined. Results showed that participants’ running velocity was submaximal before or while calling ‘no’. Also running acceleration was often submaximal. These results cannot be explained by the use of OAC in judging catchability and ultimately call for a new strategy of locomotor control in running to catch a fly ball

    Scientists’ Warning on Climate Change and Medicinal Plants

    Get PDF
    The recent publication of a World Scientists’ Warning to Humanity highlighted the fact that climate change, absent strenuous mitigation or adaptation efforts, will have profound negative effects for humanity and other species, affecting numerous aspects of life. In this paper, we call attention to one of these aspects, the effects of climate change on medicinal plants. These plants provide many benefits for human health, particularly in communities where Western medicine is unavailable. As for other species, their populations may be threatened by changing temperature and precipitation regimes, disruption of commensal relationships, and increases in pests and pathogens, combined with anthropogenic habitat fragmentation that impedes migration. Additionally, medicinal species are often harvested unsustainably, and this combination of pressures may push many populations to extinction. A second issue is that some species may respond to increased environmental stresses not only with declines in biomass production but with changes in chemical content, potentially affecting quality or even safety of medicinal products. We therefore recommend actions including conservation and local cultivation of valued plants, sustainability training for harvesters and certification of commercial material, preservation of traditional knowledge, and programs to monitor raw material quality, in addition to, of course, efforts to mitigate climate change

    Scientistsʌ warning on climate change and medicinal plants

    Get PDF
    The recent publication of a World Scientistsʌ Warning to Humanity highlighted the fact that climate change, absent strenuous mitigation or adaptation efforts, will have profound negative effects for humanity and other species, affecting numerous aspects of life. In this paper, we call attention to one of these aspects, the effects of climate change on medicinal plants. These plants provide many benefits for human health, particularly in communities where Western medicine is unavailable. As for other species, their populations may be threatened by changing temperature and precipitation regimes, disruption of commensal relationships, and increases in pests and pathogens, combined with anthropogenic habitat fragmentation that impedes migration. Additionally, medicinal species are often harvested unsustainably, and this combination of pressures may push many populations to extinction. A second issue is that some species may respond to increased environmental stresses not only with declines in biomass production but with changes in chemical content, potentially affecting quality or even safety of medicinal products. We therefore recommend actions including conservation and local cultivation of valued plants, sustainability training for harvesters and certification of commercial material, preservation of traditional knowledge, and programs to monitor raw material quality in addition to, of course, efforts to mitigate climate change

    Direct proof of electron capture decay of 258^{258}Db

    Get PDF

    Looking into the flora of Dutch Brazil: botanical identifications of seventeenth century plant illustrations in the Libri Picturati

    Get PDF
    Horizon 2020(H2020)ERC Agreement No. 715423Heritage of Indigenous PeoplesPlant science
    • 

    corecore