469 research outputs found

    3-Dimensional Imaging of Biological Structures by High Resolution Confocal Scanning Laser Microscopy

    Get PDF
    Imaging in confocal microscopy is characterized by the ability to make a selective image of just one plane inside a specimen, virtually unaffected -within certain limits-by the out-of-focus regions above and below it. This property, called optical sectioning, is accompanied by improved imaging transverse to the optical axis. We have coupled a confocal microscope to a computer system, making the combination of both an excellent instrument for mapping the 3-dimensional structure of extended specimens into a computer memory/data array. We measured that the volume element contributing to each data point has, under typical fluorescence conditions, a size of 0.2 x 0.2 x 0.72 μm. The data can be analysed and represented in various ways, i.e., stereoscopical views from any desired angle. After a description of the experimental arrangement, we show various examples of biological and food-structural studies. The microscope can be operated either in reflection or in fluorescence. In the latter mode a spectral element allows selection of the wavelength band of fluorescence light contributing to the image. In this way, we can distinguish various structures inside the cell and study their 3-dimensional relationships. Various applications in biology and the study of food structure are presented

    Computational flow cytometry as a diagnostic tool in suspected-myelodysplastic syndromes

    Get PDF
    The diagnostic work-up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this study, we developed and prospectively validated a fully computational tool for flow cytometry diagnostics in suspected-MDS. The computational diagnostic workflow consists of methods for pre-processing flow cytometry data, followed by a cell population detection method (FlowSOM) and a machine learning classifier (Random Forest). Based on a six tubes FC panel, the workflow obtained a 90% sensitivity and 93% specificity in an independent validation cohort. For practical advantages (e.g., reduced processing time and costs), a second computational diagnostic workflow was trained, solely based on the best performing single tube of the training cohort. This workflow obtained 97% sensitivity and 95% specificity in the prospective validation cohort. Both workflows outperformed the conventional, expert analyzed flow cytometry scores for diagnosis with respect to accuracy, objectivity and time investment (less than 2 min per patient)

    Patient's thoughts and expectations about centres of expertise for PKU

    Get PDF
    Background: In the Netherlands (NL) the government assigned 2 hospitals as centres of expertise (CE) for Phenylketonuria (PKU), while in the United Kingdom (UK) and Germany no centres are assigned specifically as PKU CE's. Methods: To identify expectations of patients/caregivers with PKU of CEs, a web-based survey was distributed through the national Phenylketonuria societies of Germany, NL and UK. Results: In total, 105 responded (43 patients, 56 parents, 4 grandparents, 2 other) of whom 59 were from NL, 33 from UK and 13 from Germany. All participants (n = 105) agreed that patients and/or practitioners would benefit from CEs. The frequency patients would want to visit a CE, when not treated in a CE (n = 83) varied: every hospital visit (24%, n = 20), annual or bi-annual (45%, n = 37), at defined patient ages (6%, n = 5), one visit only (22%, n = 18), or never (4%, n = 3). Distance was reported as a major barrier (42%, n = 35). 78% (n = 65) expected CE physicians and dieticians to have a higher level of knowledge than in non-CE centres. For participants already treated in a CE (n = 68), 66% requested a more extensive annual or bi-annual review. In general, psychology review and neuropsychologist assessment were identified as necessary by approximately half of the 105 participants. In addition, 66% (n = 68) expected a strong collaboration with patient associations. Conclusion: In this small study, most participants expected that assigning CEs will change the structure of and delivery of Phenylketonuria care

    Food or medicine? A European regulatory perspective on nutritional therapy products to treat inborn errors of metabolism

    Get PDF
    Dietary or nutritional management strategies are the cornerstone of treatment for many inborn errors of metabolism (IEMs). Though a vital part of standard of care, the products prescribed for this are often not formally registered as medication. Instead, they are regulated as food or as food supplements, impacting the level of oversight as well as reimbursed policies. This scoping literature review explores the European regulatory framework relevant to these products and its implications for current clinical practice. Searches of electronic databases (PubMed, InfoCuria) were carried out, supplemented by articles identified by experts, from reference lists, relevant guidelines and case-law by the European Court of Justice. In the European Union (EU), nutritional therapy products are regulated as food supplements, food for special medical purposes (FSMPs) or medication. The requirements and level of oversight increase for each of these categories. Relying on lesser-regulated food products to treat IEMs raises concerns regarding product quality, safety, reimbursement and patient access. In order to ascertain whether a nutritional therapy product functions as medication and thus could be classified as such, we developed a flowchart to assess treatment characteristics (benefit, pharmacological attributes, and safety) with a case-based approach. Evaluating nutritional therapy products might reveal a justifiable need for a pharmaceutical product. A flowchart can facilitate systematically distinguishing products that function medication-like in the management of IEMs. Subsequently, finding and implementing appropriate solutions for these products might help improve the quality, safety and accessibility including reimbursement of treatment for IEMs.</p

    Long-term dietary intervention with low Phe and/or a specific nutrient combination improve certain aspects of brain functioning in phenylketonuria (PKU)

    Get PDF
    Introduction In phenylketonuria (PKU), a gene mutation in the phenylalanine metabolic pathway causes accumulation of phenylalanine (Phe) in blood and brain. Although early introduction of a Phe-restricted diet can prevent severe symptoms from developing, patients who are diagnosed and treated early still experience deficits in cognitive functioning indicating shortcomings of current treatment. In the search for new and/or additional treatment strategies, a specific nutrient combination (SNC) was postulated to improve brain function in PKU. In this study, a long-term dietary intervention with a low-Phe diet, a specific combination of nutrients designed to improve brain function, or both concepts together was investigated in male and female BTBR PKU and WT mice. Material & methods 48 homozygous wild-types (WT, +/+) and 96 PKU BTBRPah2 (-/-) male and female mice received dietary interventions from postnatal day 31 till 10 months of age and were distributed in the following six groups: high Phe diet (WT C-HP, PKU C-HP), high Phe plus specific nutrient combination (WT SNC-HP, PKU SNC-HP), PKU low-Phe diet (PKU C-LP), and PKU low-Phe diet plus specific nutrient combination (PKU SNC- LP). Memory and motor function were tested at time points 3, 6, and 9 months after treatment initiation in the open field (OF), novel object recognition test (NOR), spatial object recognition test (SOR), and the balance beam (BB). At the end of the experiments, brain neurotransmitter concentrations were determined. Results In the NOR, we found that PKU mice, despite being subjected to high Phe conditions, could master the task on all three time points when supplemented with SNC. Under low Phe conditions, PKU mice on control diet could master the NOR at all three time points, while PKU mice on the SNC supplemented diet could master the task at time points 6 and 9 months. SNC supplementation did not consistently influence the performance in the OF, SOR or BB in PKU mice. The low Phe diet was able to normalize concentrations of norepinephrine and serotonin; however, these neurotransmitters were not influenced by SNC supplementation. Conclusion This study demonstrates that both a long-lasting low Phe diet, the diet enriched with SNC, as well as the combined diet was able to ameliorate some, but not all of these PKU-induced abnormalities. Specifically, this study is the first long-term intervention study in BTBR PKU mice that shows that SNC supplementation can specifically improve novel object recognition

    Dried blood spot versus venous blood sampling for phenylalanine and tyrosine

    Get PDF
    Background: This study investigated the agreement between various dried blood spot (DBS) and venous blood sample measurements of phenylalanine and tyrosine concentrations in Phenylketonuria (PKU) and Tyrosinemia type 1 (TT1) patients. Study design: Phenylalanine and tyrosine concentrations were studied in 45 PKU/TT1 patients in plasma from venous blood in lithium heparin (LH) and EDTA tubes; venous blood from LH and EDTA tubes on a DBS card; venous blood directly on a DBS card; and capillary blood on a DBS card. Plasma was analyzed with an amino acid analyzer and DBS were analyzed with liquid chromatography-mass spectrometry. Agreement between different methods was assessed using Passing and Bablok fit and Bland Altman analyses. Results: In general, phenylalanine concentrations in LH plasma were comparable to capillary DBS, whereas tyrosine concentrations were slightly higher in LH plasma (constant bias of 6.4 μmol/L). However, in the low phenylalanine range, most samples had higher phenylalanine concentrations in DBS compared to LH plasma. Remarkably, phenylalanine and tyrosine in EDTA plasma were higher compared to all other samples (slopes ranging from 7 to 12%). No differences were observed when comparing capillary DBS to other DBS. Conclusions: Overall agreement between plasma and DBS is good. However, bias is specimen-(LH vs EDTA), and possibly concentration-(low phenylalanine) dependent. Because of the overall good agreement, we recommend the use of a DBS-plasma correction factor for DBS measurement. Each laboratory should determine their own factor dependent on filter card type, extraction and calibration protocols taking the LH plasma values as gold standard

    Dietary treatment in Dutch children with phenylketonuria:An inventory of associated social restrictions and eating problems

    Get PDF
    OBJECTIVES: Dietary treatment in phenylketonuria (PKU) is known to cause eating problems, but knowledge of both prevalence and magnitude, especially for social restrictions, is scarce. Our aim was to evaluate the social restrictions and eating problems that children with PKU and their caregivers experience with dietary treatment. METHODS: A web-based questionnaire, based on the Behavioral Pediatrics Feeding Assessment Scale with additional PKU-specific questions, was developed in close collaboration with and distributed by the Dutch PKU Association, which sent an e-mail to its members containing a link to the questionnaire. The questionnaire was completed by caregivers of children with PKU in the Netherlands and caregivers of age-matched children without PKU. Data were analyzed with the Kruskal-Wallis and Mann-Whitney U test using SPSS. RESULTS: Compared with caregivers of children in the control group (ages 1-16 y; n = 50), caregivers of children with PKU (ages 1-16 y; n = 57) reported more difficulty in offering food variety, experienced more stress when eating an evening meal outside the home and during vacation, and were stricter about (accidental) spilling of food during dinner by the child (P < 0.05). They also reported to being angrier, more frustrated, and more anxious when feeding their child, and they more often felt that their child's eating pattern had a negative influence on the child's general health (P < 0.05). CONCLUSION: This pilot study provides further evidence that restriction of social activities and eating problems associated with dietary restrictions is more common in children with PKU, and warrants awareness on this topic among professionals working with these children

    Blood and brain biochemistry and behaviour in NTBC and dietary treated tyrosinemia type 1 mice

    Get PDF
    Tyrosinemia type 1 (TT1) is a rare metabolic disease caused by a defect in the tyrosine degradation pathway. Neurocognitive deficiencies have been described in TT1 patients, that have, among others, been related to changes in plasma large neutral amino acids (LNAA) that could result in changes in brain LNAA and neurotransmitter concentrations. Therefore, this project aimed to investigate plasma and brain LNAA, brain neurotransmitter concentrations and behavior in C57 Bl/6 fumarylacetoacetate hydrolase deficient (FAH-/-) mice treated with 2-(2-nitro-4-trifluoromethylbenoyl)-1,3-cyclohexanedione (NTBC) and/or diet and wild-type mice. Plasma and brain tyrosine concentrations were clearly increased in all NTBC treated animals, even with diet (p <0.001). Plasma and brain phenylalanine concentrations tended to be lower in all FAH-/- mice. Other brain LNAA, were often slightly lower in NTBC treated FAH-/- mice. Brain neurotransmitter concentrations were usually within a normal range, although serotonin was negatively correlated with brain tyrosine concentrations (p <0.001). No clear behavioral differences between the different groups of mice could be found. To conclude, this is the first study measuring plasma and brain biochemistry in FAH-/- mice. Clear changes in plasma and brain LNAA have been shown. Further research should be done to relate the biochemical changes to neurocognitive impairments in TT1 patients
    • …
    corecore